Monitoring the understory in eucalyptus plantations using airborne laser scanning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Agrícola (Online) |
Texto Completo: | https://www.revistas.usp.br/sa/article/view/183110 |
Resumo: | In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by gcanopy, gunderstory, and gunderstory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation. |
id |
USP-18_7ea1f5240de8525dcde9c7a61c5447cc |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/183110 |
network_acronym_str |
USP-18 |
network_name_str |
Scientia Agrícola (Online) |
repository_id_str |
|
spelling |
Monitoring the understory in eucalyptus plantations using airborne laser scanningLiDARremote sensingweed controlunderstory vegetationIn eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by gcanopy, gunderstory, and gunderstory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation.Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz2021-01-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/sa/article/view/18311010.1590/1678-992X-2019-0134Scientia Agricola; v. 78 n. 1 (2021); e20190134Scientia Agricola; Vol. 78 Núm. 1 (2021); e20190134Scientia Agricola; Vol. 78 No. 1 (2021); e201901341678-992X0103-9016reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USPenghttps://www.revistas.usp.br/sa/article/view/183110/169823Copyright (c) 2021 Scientia Agricolahttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMelo, Alessandra Morais Reis, Cristiano Rodrigues Martins, Bruno Ferraz Penido, Tamires Mousslech Andrade Rodriguez, Luiz Carlos Estraviz Gorgens, Eric Bastos 2021-03-12T19:33:26Zoai:revistas.usp.br:article/183110Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2021-03-12T19:33:26Scientia Agrícola (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
title |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
spellingShingle |
Monitoring the understory in eucalyptus plantations using airborne laser scanning Melo, Alessandra Morais LiDAR remote sensing weed control understory vegetation |
title_short |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
title_full |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
title_fullStr |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
title_full_unstemmed |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
title_sort |
Monitoring the understory in eucalyptus plantations using airborne laser scanning |
author |
Melo, Alessandra Morais |
author_facet |
Melo, Alessandra Morais Reis, Cristiano Rodrigues Martins, Bruno Ferraz Penido, Tamires Mousslech Andrade Rodriguez, Luiz Carlos Estraviz Gorgens, Eric Bastos |
author_role |
author |
author2 |
Reis, Cristiano Rodrigues Martins, Bruno Ferraz Penido, Tamires Mousslech Andrade Rodriguez, Luiz Carlos Estraviz Gorgens, Eric Bastos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Melo, Alessandra Morais Reis, Cristiano Rodrigues Martins, Bruno Ferraz Penido, Tamires Mousslech Andrade Rodriguez, Luiz Carlos Estraviz Gorgens, Eric Bastos |
dc.subject.por.fl_str_mv |
LiDAR remote sensing weed control understory vegetation |
topic |
LiDAR remote sensing weed control understory vegetation |
description |
In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by gcanopy, gunderstory, and gunderstory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/sa/article/view/183110 10.1590/1678-992X-2019-0134 |
url |
https://www.revistas.usp.br/sa/article/view/183110 |
identifier_str_mv |
10.1590/1678-992X-2019-0134 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/sa/article/view/183110/169823 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Scientia Agricola http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Scientia Agricola http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz |
publisher.none.fl_str_mv |
Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz |
dc.source.none.fl_str_mv |
Scientia Agricola; v. 78 n. 1 (2021); e20190134 Scientia Agricola; Vol. 78 Núm. 1 (2021); e20190134 Scientia Agricola; Vol. 78 No. 1 (2021); e20190134 1678-992X 0103-9016 reponame:Scientia Agrícola (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Scientia Agrícola (Online) |
collection |
Scientia Agrícola (Online) |
repository.name.fl_str_mv |
Scientia Agrícola (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
scientia@usp.br||alleoni@usp.br |
_version_ |
1800222794489790464 |