Estudos genéticos sôbre o milho tunicata
Autor(a) principal: | |
---|---|
Data de Publicação: | 1945 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Anais da Escola Superior de Agricultura Luiz de Queiroz |
Texto Completo: | https://www.revistas.usp.br/aesalq/article/view/55153 |
Resumo: | The study of pod corn seems still of much importance from different points of view. The phylogenetical importance of the tunicate factor as a wild type relic gene has been recently discussed in much detail by MANGELSDORF and REEVES (1939), and by BRIEGER (1943, 1944a e b). Selection experiments have shown that the pleiotropic effect of the Tu factor can be modified very extensively (BRIEGER 1944a) and some of the forms thus obtained permitt comparison of male and female inflorescences in corn and related grasses. A detailed discussion of the botanical aspect shall be given shortly. The genetic apect, finally, is the subject of the present publication. Pod corn has been obtained twice: São Paulo Pod Corn and Bolivia Pod Corn. The former came from one half ear left in our laboratory by a student and belongs to the type of corn cultivated in the State of São Paulo, while the other belongs to the Andean group, and has been received both through Dr. CARDENAS, President of the University at Cochabamba, Bolivia, and through Dr. H. C. CUTLER, Harvard University, who collected material in the Andes. The results of the studies may be summarized as follows: 1) In both cases, pod corn is characterized by the presence of a dominant Tu factor, localized in the fourth chromosome and linked with sul. The crossover value differs somewhat from the mean value of 29% given by EMERSON, BEADLE and FRAZER (1935) and was 25% in 1217 plants for São Paulo Pod Corn and 36,5% in 345 plants for Bolivia Pod Corn. However not much importance should be attributed to the quantitative differences. 2) Segregation was completely normal in Bolivia Pod Corn while São Paulo Pod Corn proved to be heterozygous for a new com uma eliminação forte, funcionam apenas 8% em vez de 50%. Existem cerca de 30% de "jcrossing-over entre o gen doce (Su/su) e o fator gametofítico; è cerca de 5% entre o gen Tu e o fator gametofítico. A ordem dos gens no cromosômio IV é: Ga4 - Tu - Sul. 3) Using BRIEGER'S formulas (1930, 1937a, 1937b) the following determinations were made. a) the elimination of ga4 pollen tubes may be strong or weak. In the former case only about 8% and in the latter 37% of ga4 pollen tubes function, instead of the 50% expected in normal heterozygotes. b) There is about 30,4% crossing-over between sul and ga4 and 5,3% between Tu and ga3, the order of the factors beeing Su 1 - Tu - Ga4. 4) The new gametophyte factor differs from the two others factors in the same chromosome, causing competition between pollen tubes. The factor Gal, ocupies another locus, considerably to the left of Sul (EMERSON, BEADLE AND FRAZSER, 1935). The gen spl ocupies another locus and causes a difference of the size of the pollen grains, besides an elimination of pollen tubes, while no such differences were observed in the case of the new factor Ga4. 5) It may be mentioned, without entering into a detailed discussion, that it seems remarquable that three of the few gametophyte factors, so far studied in detail are localized in chromosome four. Actuality there are a few more known (BRIEGER, TIDBURY AND TSENG 1938), but only one other has been localized so far, Ga2, in chromosome five between btl and prl. (BRIEGER, 1935). 6) The fourth chromosome of corn seems to contain other pecularities still. MANGELSDORF AND REEVES (1939) concluded that it carries two translocations from Tripsacum chromosomes, and BRIEGER (1944b) suggested that the tu allel may have been introduced from a tripsacoid ancestor in substitution of the wild type gene Tu at the beginning of domestication. Serious disturbances in the segregation of fourth chromosome factors have been observed (BRIEGER, unpublished) in the hybrids of Brazilian corn and Mexican teosinte, caused by gametophytic and possibly zygotic elimination. Future studies must show wether there is any relation between the frequency of factors, causing gametophyte elimination and the presence of regions of chromosomes, tranfered either from Tripsacum or a related species, by translocation or crossing-over. |
id |
USP-46_af42a9757bf5d915075bad227ae2f417 |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/55153 |
network_acronym_str |
USP-46 |
network_name_str |
Anais da Escola Superior de Agricultura Luiz de Queiroz |
repository_id_str |
|
spelling |
Estudos genéticos sôbre o milho tunicata The study of pod corn seems still of much importance from different points of view. The phylogenetical importance of the tunicate factor as a wild type relic gene has been recently discussed in much detail by MANGELSDORF and REEVES (1939), and by BRIEGER (1943, 1944a e b). Selection experiments have shown that the pleiotropic effect of the Tu factor can be modified very extensively (BRIEGER 1944a) and some of the forms thus obtained permitt comparison of male and female inflorescences in corn and related grasses. A detailed discussion of the botanical aspect shall be given shortly. The genetic apect, finally, is the subject of the present publication. Pod corn has been obtained twice: São Paulo Pod Corn and Bolivia Pod Corn. The former came from one half ear left in our laboratory by a student and belongs to the type of corn cultivated in the State of São Paulo, while the other belongs to the Andean group, and has been received both through Dr. CARDENAS, President of the University at Cochabamba, Bolivia, and through Dr. H. C. CUTLER, Harvard University, who collected material in the Andes. The results of the studies may be summarized as follows: 1) In both cases, pod corn is characterized by the presence of a dominant Tu factor, localized in the fourth chromosome and linked with sul. The crossover value differs somewhat from the mean value of 29% given by EMERSON, BEADLE and FRAZER (1935) and was 25% in 1217 plants for São Paulo Pod Corn and 36,5% in 345 plants for Bolivia Pod Corn. However not much importance should be attributed to the quantitative differences. 2) Segregation was completely normal in Bolivia Pod Corn while São Paulo Pod Corn proved to be heterozygous for a new com uma eliminação forte, funcionam apenas 8% em vez de 50%. Existem cerca de 30% de "jcrossing-over entre o gen doce (Su/su) e o fator gametofítico; è cerca de 5% entre o gen Tu e o fator gametofítico. A ordem dos gens no cromosômio IV é: Ga4 - Tu - Sul. 3) Using BRIEGER'S formulas (1930, 1937a, 1937b) the following determinations were made. a) the elimination of ga4 pollen tubes may be strong or weak. In the former case only about 8% and in the latter 37% of ga4 pollen tubes function, instead of the 50% expected in normal heterozygotes. b) There is about 30,4% crossing-over between sul and ga4 and 5,3% between Tu and ga3, the order of the factors beeing Su 1 - Tu - Ga4. 4) The new gametophyte factor differs from the two others factors in the same chromosome, causing competition between pollen tubes. The factor Gal, ocupies another locus, considerably to the left of Sul (EMERSON, BEADLE AND FRAZSER, 1935). The gen spl ocupies another locus and causes a difference of the size of the pollen grains, besides an elimination of pollen tubes, while no such differences were observed in the case of the new factor Ga4. 5) It may be mentioned, without entering into a detailed discussion, that it seems remarquable that three of the few gametophyte factors, so far studied in detail are localized in chromosome four. Actuality there are a few more known (BRIEGER, TIDBURY AND TSENG 1938), but only one other has been localized so far, Ga2, in chromosome five between btl and prl. (BRIEGER, 1935). 6) The fourth chromosome of corn seems to contain other pecularities still. MANGELSDORF AND REEVES (1939) concluded that it carries two translocations from Tripsacum chromosomes, and BRIEGER (1944b) suggested that the tu allel may have been introduced from a tripsacoid ancestor in substitution of the wild type gene Tu at the beginning of domestication. Serious disturbances in the segregation of fourth chromosome factors have been observed (BRIEGER, unpublished) in the hybrids of Brazilian corn and Mexican teosinte, caused by gametophytic and possibly zygotic elimination. Future studies must show wether there is any relation between the frequency of factors, causing gametophyte elimination and the presence of regions of chromosomes, tranfered either from Tripsacum or a related species, by translocation or crossing-over. Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz1945-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/aesalq/article/view/5515310.1590/S0071-12761945000100007Anais da Escola Superior de Agricultura Luiz de Queiroz; v. 2 (1945); 209-238 2316-89350071-1276reponame:Anais da Escola Superior de Agricultura Luiz de Queirozinstname:Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP)instacron:USPporhttps://www.revistas.usp.br/aesalq/article/view/55153/58784Brieger, F. G.info:eu-repo/semantics/openAccess2013-04-30T17:01:12Zoai:revistas.usp.br:article/55153Revistahttps://www.revistas.usp.br/aesalq/about/contactPUBhttps://www.revistas.usp.br/aesalq/oaiscientia@esalq.usp.br0071-12760071-1276opendoar:2013-04-30T17:01:12Anais da Escola Superior de Agricultura Luiz de Queiroz - Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP)false |
dc.title.none.fl_str_mv |
Estudos genéticos sôbre o milho tunicata |
title |
Estudos genéticos sôbre o milho tunicata |
spellingShingle |
Estudos genéticos sôbre o milho tunicata Brieger, F. G. |
title_short |
Estudos genéticos sôbre o milho tunicata |
title_full |
Estudos genéticos sôbre o milho tunicata |
title_fullStr |
Estudos genéticos sôbre o milho tunicata |
title_full_unstemmed |
Estudos genéticos sôbre o milho tunicata |
title_sort |
Estudos genéticos sôbre o milho tunicata |
author |
Brieger, F. G. |
author_facet |
Brieger, F. G. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Brieger, F. G. |
description |
The study of pod corn seems still of much importance from different points of view. The phylogenetical importance of the tunicate factor as a wild type relic gene has been recently discussed in much detail by MANGELSDORF and REEVES (1939), and by BRIEGER (1943, 1944a e b). Selection experiments have shown that the pleiotropic effect of the Tu factor can be modified very extensively (BRIEGER 1944a) and some of the forms thus obtained permitt comparison of male and female inflorescences in corn and related grasses. A detailed discussion of the botanical aspect shall be given shortly. The genetic apect, finally, is the subject of the present publication. Pod corn has been obtained twice: São Paulo Pod Corn and Bolivia Pod Corn. The former came from one half ear left in our laboratory by a student and belongs to the type of corn cultivated in the State of São Paulo, while the other belongs to the Andean group, and has been received both through Dr. CARDENAS, President of the University at Cochabamba, Bolivia, and through Dr. H. C. CUTLER, Harvard University, who collected material in the Andes. The results of the studies may be summarized as follows: 1) In both cases, pod corn is characterized by the presence of a dominant Tu factor, localized in the fourth chromosome and linked with sul. The crossover value differs somewhat from the mean value of 29% given by EMERSON, BEADLE and FRAZER (1935) and was 25% in 1217 plants for São Paulo Pod Corn and 36,5% in 345 plants for Bolivia Pod Corn. However not much importance should be attributed to the quantitative differences. 2) Segregation was completely normal in Bolivia Pod Corn while São Paulo Pod Corn proved to be heterozygous for a new com uma eliminação forte, funcionam apenas 8% em vez de 50%. Existem cerca de 30% de "jcrossing-over entre o gen doce (Su/su) e o fator gametofítico; è cerca de 5% entre o gen Tu e o fator gametofítico. A ordem dos gens no cromosômio IV é: Ga4 - Tu - Sul. 3) Using BRIEGER'S formulas (1930, 1937a, 1937b) the following determinations were made. a) the elimination of ga4 pollen tubes may be strong or weak. In the former case only about 8% and in the latter 37% of ga4 pollen tubes function, instead of the 50% expected in normal heterozygotes. b) There is about 30,4% crossing-over between sul and ga4 and 5,3% between Tu and ga3, the order of the factors beeing Su 1 - Tu - Ga4. 4) The new gametophyte factor differs from the two others factors in the same chromosome, causing competition between pollen tubes. The factor Gal, ocupies another locus, considerably to the left of Sul (EMERSON, BEADLE AND FRAZSER, 1935). The gen spl ocupies another locus and causes a difference of the size of the pollen grains, besides an elimination of pollen tubes, while no such differences were observed in the case of the new factor Ga4. 5) It may be mentioned, without entering into a detailed discussion, that it seems remarquable that three of the few gametophyte factors, so far studied in detail are localized in chromosome four. Actuality there are a few more known (BRIEGER, TIDBURY AND TSENG 1938), but only one other has been localized so far, Ga2, in chromosome five between btl and prl. (BRIEGER, 1935). 6) The fourth chromosome of corn seems to contain other pecularities still. MANGELSDORF AND REEVES (1939) concluded that it carries two translocations from Tripsacum chromosomes, and BRIEGER (1944b) suggested that the tu allel may have been introduced from a tripsacoid ancestor in substitution of the wild type gene Tu at the beginning of domestication. Serious disturbances in the segregation of fourth chromosome factors have been observed (BRIEGER, unpublished) in the hybrids of Brazilian corn and Mexican teosinte, caused by gametophytic and possibly zygotic elimination. Future studies must show wether there is any relation between the frequency of factors, causing gametophyte elimination and the presence of regions of chromosomes, tranfered either from Tripsacum or a related species, by translocation or crossing-over. |
publishDate |
1945 |
dc.date.none.fl_str_mv |
1945-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/aesalq/article/view/55153 10.1590/S0071-12761945000100007 |
url |
https://www.revistas.usp.br/aesalq/article/view/55153 |
identifier_str_mv |
10.1590/S0071-12761945000100007 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/aesalq/article/view/55153/58784 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz |
publisher.none.fl_str_mv |
Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz |
dc.source.none.fl_str_mv |
Anais da Escola Superior de Agricultura Luiz de Queiroz; v. 2 (1945); 209-238 2316-8935 0071-1276 reponame:Anais da Escola Superior de Agricultura Luiz de Queiroz instname:Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP) instacron:USP |
instname_str |
Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Anais da Escola Superior de Agricultura Luiz de Queiroz |
collection |
Anais da Escola Superior de Agricultura Luiz de Queiroz |
repository.name.fl_str_mv |
Anais da Escola Superior de Agricultura Luiz de Queiroz - Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP) |
repository.mail.fl_str_mv |
scientia@esalq.usp.br |
_version_ |
1797050009138495488 |