Extreme losses in risk markets

Detalhes bibliográficos
Autor(a) principal: Arraes, Ronaldo A
Data de Publicação: 2006
Outros Autores: Rocha, Alane S
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Contabilidade & Finanças (Online)
Texto Completo: https://www.revistas.usp.br/rcf/article/view/34202
Resumo: This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones.
id USP-7_66ebab3c99a0fc5973a9d39bb0320067
oai_identifier_str oai:revistas.usp.br:article/34202
network_acronym_str USP-7
network_name_str Revista Contabilidade & Finanças (Online)
repository_id_str
spelling Extreme losses in risk markets Perdas extremas em mercados de risco Financial Investment RiskDistribution of Extreme ValuesValue-at-Risk (VaR)Extreme LossesRisco FinanceiroDistribuição dos Valores Extremos (TVE)Valor em Risco (VaR)Perdas Extremas This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones. Neste artigo, infere-se sobre a distribuição de valores extremos de uma variável aleatória representada pelas severas perdas diárias em investimentos financeiros. A Teoria dos Valores Extremos (TVE) fundamenta a modelagem de eventos gravosos raros, com expressivas conseqüências econômicas associadas a probabilidades muito pequenas de ocorrerem. Uma das grandes preocupações, na análise de riscos, é desenvolver técnicas para prever essas ocorrências excepcionais. Assim, as caudas das distribuições desses eventos raros são importantes para o estudo do risco, tornando a TVE uma ferramenta de grande valia para a estimação mais acurada do risco dessas perdas elevadas. Investigou-se, neste trabalho, a estimação de perdas máximas esperadas para séries financeiras, empregando-se: i) métodos tradicionais, que utilizaram todos os dados amostrais para analisar a variável aleatória em questão e ii) a metodologia dos Valores Extremos, particularmente a da Distribuição Generalizada dos Valores Extremos (DGVE), que utilizou apenas um conjunto de máximos amostrais para a estimação das perdas máximas esperadas. Concluiu-se que os métodos tradicionais subestimaram as perdas esperadas, sobretudo nas proximidades dos limites das caudas das distribuições, e que a DGVE mostrou-se bem mais eficiente na previsão dessas perdas extremas nas séries analisadas: Ibovespa, Merval, Dow Jones. Universidade de São Paulo. Faculdade de Economia, Administração, Contabilidade e Atuária2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/rcf/article/view/3420210.1590/S1519-70772006000300003Revista Contabilidade & Finanças; v. 17 n. 42 (2006); 22-34 Revista Contabilidade & Finanças; Vol. 17 No. 42 (2006); 22-34 Revista Contabilidade & Finanças; Vol. 17 Núm. 42 (2006); 22-34 1808-057X1519-7077reponame:Revista Contabilidade & Finanças (Online)instname:Universidade de São Paulo (USP)instacron:USPporhttps://www.revistas.usp.br/rcf/article/view/34202/36934Copyright (c) 2018 Revista Contabilidade & Finançasinfo:eu-repo/semantics/openAccessArraes, Ronaldo ARocha, Alane S2012-07-21T18:17:16Zoai:revistas.usp.br:article/34202Revistahttp://www.revistas.usp.br/rcf/indexPUBhttps://old.scielo.br/oai/scielo-oai.phprecont@usp.br||recont@usp.br1808-057X1519-7077opendoar:2012-07-21T18:17:16Revista Contabilidade & Finanças (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Extreme losses in risk markets
Perdas extremas em mercados de risco
title Extreme losses in risk markets
spellingShingle Extreme losses in risk markets
Arraes, Ronaldo A
Financial Investment Risk
Distribution of Extreme Values
Value-at-Risk (VaR)
Extreme Losses
Risco Financeiro
Distribuição dos Valores Extremos (TVE)
Valor em Risco (VaR)
Perdas Extremas
title_short Extreme losses in risk markets
title_full Extreme losses in risk markets
title_fullStr Extreme losses in risk markets
title_full_unstemmed Extreme losses in risk markets
title_sort Extreme losses in risk markets
author Arraes, Ronaldo A
author_facet Arraes, Ronaldo A
Rocha, Alane S
author_role author
author2 Rocha, Alane S
author2_role author
dc.contributor.author.fl_str_mv Arraes, Ronaldo A
Rocha, Alane S
dc.subject.por.fl_str_mv Financial Investment Risk
Distribution of Extreme Values
Value-at-Risk (VaR)
Extreme Losses
Risco Financeiro
Distribuição dos Valores Extremos (TVE)
Valor em Risco (VaR)
Perdas Extremas
topic Financial Investment Risk
Distribution of Extreme Values
Value-at-Risk (VaR)
Extreme Losses
Risco Financeiro
Distribuição dos Valores Extremos (TVE)
Valor em Risco (VaR)
Perdas Extremas
description This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones.
publishDate 2006
dc.date.none.fl_str_mv 2006-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistas.usp.br/rcf/article/view/34202
10.1590/S1519-70772006000300003
url https://www.revistas.usp.br/rcf/article/view/34202
identifier_str_mv 10.1590/S1519-70772006000300003
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.revistas.usp.br/rcf/article/view/34202/36934
dc.rights.driver.fl_str_mv Copyright (c) 2018 Revista Contabilidade & Finanças
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Revista Contabilidade & Finanças
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de São Paulo. Faculdade de Economia, Administração, Contabilidade e Atuária
publisher.none.fl_str_mv Universidade de São Paulo. Faculdade de Economia, Administração, Contabilidade e Atuária
dc.source.none.fl_str_mv Revista Contabilidade & Finanças; v. 17 n. 42 (2006); 22-34
Revista Contabilidade & Finanças; Vol. 17 No. 42 (2006); 22-34
Revista Contabilidade & Finanças; Vol. 17 Núm. 42 (2006); 22-34
1808-057X
1519-7077
reponame:Revista Contabilidade & Finanças (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Revista Contabilidade & Finanças (Online)
collection Revista Contabilidade & Finanças (Online)
repository.name.fl_str_mv Revista Contabilidade & Finanças (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv recont@usp.br||recont@usp.br
_version_ 1787713775882731520