Extreme losses in risk markets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Contabilidade & Finanças (Online) |
Texto Completo: | https://www.revistas.usp.br/rcf/article/view/34202 |
Resumo: | This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones. |
id |
USP-7_66ebab3c99a0fc5973a9d39bb0320067 |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/34202 |
network_acronym_str |
USP-7 |
network_name_str |
Revista Contabilidade & Finanças (Online) |
repository_id_str |
|
spelling |
Extreme losses in risk markets Perdas extremas em mercados de risco Financial Investment RiskDistribution of Extreme ValuesValue-at-Risk (VaR)Extreme LossesRisco FinanceiroDistribuição dos Valores Extremos (TVE)Valor em Risco (VaR)Perdas Extremas This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones. Neste artigo, infere-se sobre a distribuição de valores extremos de uma variável aleatória representada pelas severas perdas diárias em investimentos financeiros. A Teoria dos Valores Extremos (TVE) fundamenta a modelagem de eventos gravosos raros, com expressivas conseqüências econômicas associadas a probabilidades muito pequenas de ocorrerem. Uma das grandes preocupações, na análise de riscos, é desenvolver técnicas para prever essas ocorrências excepcionais. Assim, as caudas das distribuições desses eventos raros são importantes para o estudo do risco, tornando a TVE uma ferramenta de grande valia para a estimação mais acurada do risco dessas perdas elevadas. Investigou-se, neste trabalho, a estimação de perdas máximas esperadas para séries financeiras, empregando-se: i) métodos tradicionais, que utilizaram todos os dados amostrais para analisar a variável aleatória em questão e ii) a metodologia dos Valores Extremos, particularmente a da Distribuição Generalizada dos Valores Extremos (DGVE), que utilizou apenas um conjunto de máximos amostrais para a estimação das perdas máximas esperadas. Concluiu-se que os métodos tradicionais subestimaram as perdas esperadas, sobretudo nas proximidades dos limites das caudas das distribuições, e que a DGVE mostrou-se bem mais eficiente na previsão dessas perdas extremas nas séries analisadas: Ibovespa, Merval, Dow Jones. Universidade de São Paulo. Faculdade de Economia, Administração, Contabilidade e Atuária2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/rcf/article/view/3420210.1590/S1519-70772006000300003Revista Contabilidade & Finanças; v. 17 n. 42 (2006); 22-34 Revista Contabilidade & Finanças; Vol. 17 No. 42 (2006); 22-34 Revista Contabilidade & Finanças; Vol. 17 Núm. 42 (2006); 22-34 1808-057X1519-7077reponame:Revista Contabilidade & Finanças (Online)instname:Universidade de São Paulo (USP)instacron:USPporhttps://www.revistas.usp.br/rcf/article/view/34202/36934Copyright (c) 2018 Revista Contabilidade & Finançasinfo:eu-repo/semantics/openAccessArraes, Ronaldo ARocha, Alane S2012-07-21T18:17:16Zoai:revistas.usp.br:article/34202Revistahttp://www.revistas.usp.br/rcf/indexPUBhttps://old.scielo.br/oai/scielo-oai.phprecont@usp.br||recont@usp.br1808-057X1519-7077opendoar:2012-07-21T18:17:16Revista Contabilidade & Finanças (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Extreme losses in risk markets Perdas extremas em mercados de risco |
title |
Extreme losses in risk markets |
spellingShingle |
Extreme losses in risk markets Arraes, Ronaldo A Financial Investment Risk Distribution of Extreme Values Value-at-Risk (VaR) Extreme Losses Risco Financeiro Distribuição dos Valores Extremos (TVE) Valor em Risco (VaR) Perdas Extremas |
title_short |
Extreme losses in risk markets |
title_full |
Extreme losses in risk markets |
title_fullStr |
Extreme losses in risk markets |
title_full_unstemmed |
Extreme losses in risk markets |
title_sort |
Extreme losses in risk markets |
author |
Arraes, Ronaldo A |
author_facet |
Arraes, Ronaldo A Rocha, Alane S |
author_role |
author |
author2 |
Rocha, Alane S |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Arraes, Ronaldo A Rocha, Alane S |
dc.subject.por.fl_str_mv |
Financial Investment Risk Distribution of Extreme Values Value-at-Risk (VaR) Extreme Losses Risco Financeiro Distribuição dos Valores Extremos (TVE) Valor em Risco (VaR) Perdas Extremas |
topic |
Financial Investment Risk Distribution of Extreme Values Value-at-Risk (VaR) Extreme Losses Risco Financeiro Distribuição dos Valores Extremos (TVE) Valor em Risco (VaR) Perdas Extremas |
description |
This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/rcf/article/view/34202 10.1590/S1519-70772006000300003 |
url |
https://www.revistas.usp.br/rcf/article/view/34202 |
identifier_str_mv |
10.1590/S1519-70772006000300003 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/rcf/article/view/34202/36934 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2018 Revista Contabilidade & Finanças info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2018 Revista Contabilidade & Finanças |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Economia, Administração, Contabilidade e Atuária |
publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Economia, Administração, Contabilidade e Atuária |
dc.source.none.fl_str_mv |
Revista Contabilidade & Finanças; v. 17 n. 42 (2006); 22-34 Revista Contabilidade & Finanças; Vol. 17 No. 42 (2006); 22-34 Revista Contabilidade & Finanças; Vol. 17 Núm. 42 (2006); 22-34 1808-057X 1519-7077 reponame:Revista Contabilidade & Finanças (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Revista Contabilidade & Finanças (Online) |
collection |
Revista Contabilidade & Finanças (Online) |
repository.name.fl_str_mv |
Revista Contabilidade & Finanças (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
recont@usp.br||recont@usp.br |
_version_ |
1787713775882731520 |