Topology optimization for stability problems of submerged structures using the TOBS method.

Detalhes bibliográficos
Autor(a) principal: Mendes, Eduardo Aguiar
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/
Resumo: Structural topology optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the rising computational power availability. Typical Topology Optimization (TO) problems seek stiffness maximization for volume-constrained structures via density-based methods, which may generate solutions with poor stability performance, e.g. prone to buckling. A valid alternative is to include the buckling parameter as a constraint in order to obtain final designs that fulfill this criterion. In this context, binary methods - which generates clear [0,1] designs - emerge as an effective approach to solve multiphysics problems, wherein precise definition of the structural boundary is essential. A challenging TO application that benefits from this class of methods are submerged structures, e.g. offshore industry components, which are subject to design-dependent loads and might present stability issues. This loading type imposes a constant change on fluid loading location, direction and magnitude, which is not trivial for optimization procedures. In this scenario, the aim of this work it to investigate the binary nature of the TOBS method by solving topology optimization problems that consider buckling constraints and design-dependent loads, characteristic of submerged structural systems. The proposed topology optimization problem has not been explored in the literature. The linear buckling implementation is verified through analytical methods, and a benchmark optimization problem for buckling-constrained formulation is solved for efficiency analysis. Numerical examples of pressure-loaded structures are optimized and investigated regarding the stability parameter effect when compared to classic compliance minimization solutions. Further discussions are held concerning the common issues associated with the buckling eigenproblem, as well as the main parameters adopted in the TOBS method. The proposed binary framework presented promising results by obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance designs. Computational time studies showed that the buckling sensitivities are the bottleneck of the optimization process and, thus, alternative techniques should be investigated.
id USP_00ebfc2e46f7921dc974e76f8779546c
oai_identifier_str oai:teses.usp.br:tde-22022022-114244
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Topology optimization for stability problems of submerged structures using the TOBS method.Otimização topológica para problemas de estabilidade de estruturas submersas utilizando o método TOBS.Binary variablesBuckling constraintsCarregamento de pressãoOtimização topológicaPressure loadingRestrição de flambagemTopology optimizationVariáveis bináriasStructural topology optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the rising computational power availability. Typical Topology Optimization (TO) problems seek stiffness maximization for volume-constrained structures via density-based methods, which may generate solutions with poor stability performance, e.g. prone to buckling. A valid alternative is to include the buckling parameter as a constraint in order to obtain final designs that fulfill this criterion. In this context, binary methods - which generates clear [0,1] designs - emerge as an effective approach to solve multiphysics problems, wherein precise definition of the structural boundary is essential. A challenging TO application that benefits from this class of methods are submerged structures, e.g. offshore industry components, which are subject to design-dependent loads and might present stability issues. This loading type imposes a constant change on fluid loading location, direction and magnitude, which is not trivial for optimization procedures. In this scenario, the aim of this work it to investigate the binary nature of the TOBS method by solving topology optimization problems that consider buckling constraints and design-dependent loads, characteristic of submerged structural systems. The proposed topology optimization problem has not been explored in the literature. The linear buckling implementation is verified through analytical methods, and a benchmark optimization problem for buckling-constrained formulation is solved for efficiency analysis. Numerical examples of pressure-loaded structures are optimized and investigated regarding the stability parameter effect when compared to classic compliance minimization solutions. Further discussions are held concerning the common issues associated with the buckling eigenproblem, as well as the main parameters adopted in the TOBS method. The proposed binary framework presented promising results by obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance designs. Computational time studies showed that the buckling sensitivities are the bottleneck of the optimization process and, thus, alternative techniques should be investigated.A otimização estrutural topológica tem se difundido cada vez mais nos meios acadêmico e industrial em função de sua maior liberdade de projeto e a disponibilidade crescente de poder computacional. Típicos problemas de Otimização Topológica (OT) buscam a maximização da rigidez de estruturas com restrição de volume por meio de métodos baseados em densidades, podendo gerar soluções com desempenho insatisfatório de estabilidade, como, por exemplo, estruturas propensas à flambagem. Uma alternativa válida propõe implementar o parâmetro de flambagem no problema de otimização como restrição, obtendo soluções finais que já satisfazem esse critério. Nesse contexto, os métodos binários - que geram apenas designs com sólidos 1 e vazios 0 - se inserem como uma abordagem eficiente na solução de problemas de otimização, em especial os multifísicos, cuja precisa definição de fronteira estrutural é essencial. Uma aplicação desafiadora para problemas de OT que se beneficia dessa classe de método são as estruturas submersas, como os componentes da indústria offshore, sujeitos a cargas dependentes do design e que podem apresentar problemas de estabilidade. Esse tipo de carregamento impõe uma mudança constante do local, direção e magnitude do carregamento do fluido, o que não é tido como trivial em procedimentos de otimização. Nesse cenário, o objetivo desse trabalho é investigar a natureza binária do método TOBS por meio da solução de problemas de otimização topológica que consideram restrições de flambagem e cargas dependentes do design, características de sistemas estruturais submersos. O problema de otimização topológica proposto ainda não foi explorado na literatura. A implementação de flambagem linear foi verificada por meio de métodos analíticos, e um problema de otimização com restrição de flambagem de referência foi resolvido para garantia de sua eficiência. Exemplos numéricos de estruturas sob carregamento de pressão foram otimizados e investigados quanto `a influência do parâmetro de estabilidade quando comparados às soluções clássicas de minimização de compliance. Discussões sobre os problemas comuns associados à equação de autovalor e autovetor que rege o fenômeno de flambagem linear, bem como os parâmetros adotados no método do TOBS, foram apresentadas. A configuração binária proposta demonstrou resultados promissores ao obter soluções finais com melhoria significativa na resistência `a flambagem e mínima perda de rigidez. Estudos de tempo computacional mostraram que as sensibilidades de flambagem são o gargalo do processo de otimização e, portanto, técnicas alternativas para lidar com esse parâmetro devem ser investigadas.Biblioteca Digitais de Teses e Dissertações da USPSanches, Renato PicelliMendes, Eduardo Aguiar2021-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-22022022-114244Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Topology optimization for stability problems of submerged structures using the TOBS method.
Otimização topológica para problemas de estabilidade de estruturas submersas utilizando o método TOBS.
title Topology optimization for stability problems of submerged structures using the TOBS method.
spellingShingle Topology optimization for stability problems of submerged structures using the TOBS method.
Mendes, Eduardo Aguiar
Binary variables
Buckling constraints
Carregamento de pressão
Otimização topológica
Pressure loading
Restrição de flambagem
Topology optimization
Variáveis binárias
title_short Topology optimization for stability problems of submerged structures using the TOBS method.
title_full Topology optimization for stability problems of submerged structures using the TOBS method.
title_fullStr Topology optimization for stability problems of submerged structures using the TOBS method.
title_full_unstemmed Topology optimization for stability problems of submerged structures using the TOBS method.
title_sort Topology optimization for stability problems of submerged structures using the TOBS method.
author Mendes, Eduardo Aguiar
author_facet Mendes, Eduardo Aguiar
author_role author
dc.contributor.none.fl_str_mv Sanches, Renato Picelli
dc.contributor.author.fl_str_mv Mendes, Eduardo Aguiar
dc.subject.por.fl_str_mv Binary variables
Buckling constraints
Carregamento de pressão
Otimização topológica
Pressure loading
Restrição de flambagem
Topology optimization
Variáveis binárias
topic Binary variables
Buckling constraints
Carregamento de pressão
Otimização topológica
Pressure loading
Restrição de flambagem
Topology optimization
Variáveis binárias
description Structural topology optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the rising computational power availability. Typical Topology Optimization (TO) problems seek stiffness maximization for volume-constrained structures via density-based methods, which may generate solutions with poor stability performance, e.g. prone to buckling. A valid alternative is to include the buckling parameter as a constraint in order to obtain final designs that fulfill this criterion. In this context, binary methods - which generates clear [0,1] designs - emerge as an effective approach to solve multiphysics problems, wherein precise definition of the structural boundary is essential. A challenging TO application that benefits from this class of methods are submerged structures, e.g. offshore industry components, which are subject to design-dependent loads and might present stability issues. This loading type imposes a constant change on fluid loading location, direction and magnitude, which is not trivial for optimization procedures. In this scenario, the aim of this work it to investigate the binary nature of the TOBS method by solving topology optimization problems that consider buckling constraints and design-dependent loads, characteristic of submerged structural systems. The proposed topology optimization problem has not been explored in the literature. The linear buckling implementation is verified through analytical methods, and a benchmark optimization problem for buckling-constrained formulation is solved for efficiency analysis. Numerical examples of pressure-loaded structures are optimized and investigated regarding the stability parameter effect when compared to classic compliance minimization solutions. Further discussions are held concerning the common issues associated with the buckling eigenproblem, as well as the main parameters adopted in the TOBS method. The proposed binary framework presented promising results by obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance designs. Computational time studies showed that the buckling sensitivities are the bottleneck of the optimization process and, thus, alternative techniques should be investigated.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/
url https://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256528953802752