Topology optimization for stability problems of submerged structures using the TOBS method.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/ |
Resumo: | Structural topology optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the rising computational power availability. Typical Topology Optimization (TO) problems seek stiffness maximization for volume-constrained structures via density-based methods, which may generate solutions with poor stability performance, e.g. prone to buckling. A valid alternative is to include the buckling parameter as a constraint in order to obtain final designs that fulfill this criterion. In this context, binary methods - which generates clear [0,1] designs - emerge as an effective approach to solve multiphysics problems, wherein precise definition of the structural boundary is essential. A challenging TO application that benefits from this class of methods are submerged structures, e.g. offshore industry components, which are subject to design-dependent loads and might present stability issues. This loading type imposes a constant change on fluid loading location, direction and magnitude, which is not trivial for optimization procedures. In this scenario, the aim of this work it to investigate the binary nature of the TOBS method by solving topology optimization problems that consider buckling constraints and design-dependent loads, characteristic of submerged structural systems. The proposed topology optimization problem has not been explored in the literature. The linear buckling implementation is verified through analytical methods, and a benchmark optimization problem for buckling-constrained formulation is solved for efficiency analysis. Numerical examples of pressure-loaded structures are optimized and investigated regarding the stability parameter effect when compared to classic compliance minimization solutions. Further discussions are held concerning the common issues associated with the buckling eigenproblem, as well as the main parameters adopted in the TOBS method. The proposed binary framework presented promising results by obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance designs. Computational time studies showed that the buckling sensitivities are the bottleneck of the optimization process and, thus, alternative techniques should be investigated. |
id |
USP_00ebfc2e46f7921dc974e76f8779546c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-22022022-114244 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Topology optimization for stability problems of submerged structures using the TOBS method.Otimização topológica para problemas de estabilidade de estruturas submersas utilizando o método TOBS.Binary variablesBuckling constraintsCarregamento de pressãoOtimização topológicaPressure loadingRestrição de flambagemTopology optimizationVariáveis bináriasStructural topology optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the rising computational power availability. Typical Topology Optimization (TO) problems seek stiffness maximization for volume-constrained structures via density-based methods, which may generate solutions with poor stability performance, e.g. prone to buckling. A valid alternative is to include the buckling parameter as a constraint in order to obtain final designs that fulfill this criterion. In this context, binary methods - which generates clear [0,1] designs - emerge as an effective approach to solve multiphysics problems, wherein precise definition of the structural boundary is essential. A challenging TO application that benefits from this class of methods are submerged structures, e.g. offshore industry components, which are subject to design-dependent loads and might present stability issues. This loading type imposes a constant change on fluid loading location, direction and magnitude, which is not trivial for optimization procedures. In this scenario, the aim of this work it to investigate the binary nature of the TOBS method by solving topology optimization problems that consider buckling constraints and design-dependent loads, characteristic of submerged structural systems. The proposed topology optimization problem has not been explored in the literature. The linear buckling implementation is verified through analytical methods, and a benchmark optimization problem for buckling-constrained formulation is solved for efficiency analysis. Numerical examples of pressure-loaded structures are optimized and investigated regarding the stability parameter effect when compared to classic compliance minimization solutions. Further discussions are held concerning the common issues associated with the buckling eigenproblem, as well as the main parameters adopted in the TOBS method. The proposed binary framework presented promising results by obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance designs. Computational time studies showed that the buckling sensitivities are the bottleneck of the optimization process and, thus, alternative techniques should be investigated.A otimização estrutural topológica tem se difundido cada vez mais nos meios acadêmico e industrial em função de sua maior liberdade de projeto e a disponibilidade crescente de poder computacional. Típicos problemas de Otimização Topológica (OT) buscam a maximização da rigidez de estruturas com restrição de volume por meio de métodos baseados em densidades, podendo gerar soluções com desempenho insatisfatório de estabilidade, como, por exemplo, estruturas propensas à flambagem. Uma alternativa válida propõe implementar o parâmetro de flambagem no problema de otimização como restrição, obtendo soluções finais que já satisfazem esse critério. Nesse contexto, os métodos binários - que geram apenas designs com sólidos 1 e vazios 0 - se inserem como uma abordagem eficiente na solução de problemas de otimização, em especial os multifísicos, cuja precisa definição de fronteira estrutural é essencial. Uma aplicação desafiadora para problemas de OT que se beneficia dessa classe de método são as estruturas submersas, como os componentes da indústria offshore, sujeitos a cargas dependentes do design e que podem apresentar problemas de estabilidade. Esse tipo de carregamento impõe uma mudança constante do local, direção e magnitude do carregamento do fluido, o que não é tido como trivial em procedimentos de otimização. Nesse cenário, o objetivo desse trabalho é investigar a natureza binária do método TOBS por meio da solução de problemas de otimização topológica que consideram restrições de flambagem e cargas dependentes do design, características de sistemas estruturais submersos. O problema de otimização topológica proposto ainda não foi explorado na literatura. A implementação de flambagem linear foi verificada por meio de métodos analíticos, e um problema de otimização com restrição de flambagem de referência foi resolvido para garantia de sua eficiência. Exemplos numéricos de estruturas sob carregamento de pressão foram otimizados e investigados quanto `a influência do parâmetro de estabilidade quando comparados às soluções clássicas de minimização de compliance. Discussões sobre os problemas comuns associados à equação de autovalor e autovetor que rege o fenômeno de flambagem linear, bem como os parâmetros adotados no método do TOBS, foram apresentadas. A configuração binária proposta demonstrou resultados promissores ao obter soluções finais com melhoria significativa na resistência `a flambagem e mínima perda de rigidez. Estudos de tempo computacional mostraram que as sensibilidades de flambagem são o gargalo do processo de otimização e, portanto, técnicas alternativas para lidar com esse parâmetro devem ser investigadas.Biblioteca Digitais de Teses e Dissertações da USPSanches, Renato PicelliMendes, Eduardo Aguiar2021-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-22022022-114244Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Topology optimization for stability problems of submerged structures using the TOBS method. Otimização topológica para problemas de estabilidade de estruturas submersas utilizando o método TOBS. |
title |
Topology optimization for stability problems of submerged structures using the TOBS method. |
spellingShingle |
Topology optimization for stability problems of submerged structures using the TOBS method. Mendes, Eduardo Aguiar Binary variables Buckling constraints Carregamento de pressão Otimização topológica Pressure loading Restrição de flambagem Topology optimization Variáveis binárias |
title_short |
Topology optimization for stability problems of submerged structures using the TOBS method. |
title_full |
Topology optimization for stability problems of submerged structures using the TOBS method. |
title_fullStr |
Topology optimization for stability problems of submerged structures using the TOBS method. |
title_full_unstemmed |
Topology optimization for stability problems of submerged structures using the TOBS method. |
title_sort |
Topology optimization for stability problems of submerged structures using the TOBS method. |
author |
Mendes, Eduardo Aguiar |
author_facet |
Mendes, Eduardo Aguiar |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sanches, Renato Picelli |
dc.contributor.author.fl_str_mv |
Mendes, Eduardo Aguiar |
dc.subject.por.fl_str_mv |
Binary variables Buckling constraints Carregamento de pressão Otimização topológica Pressure loading Restrição de flambagem Topology optimization Variáveis binárias |
topic |
Binary variables Buckling constraints Carregamento de pressão Otimização topológica Pressure loading Restrição de flambagem Topology optimization Variáveis binárias |
description |
Structural topology optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the rising computational power availability. Typical Topology Optimization (TO) problems seek stiffness maximization for volume-constrained structures via density-based methods, which may generate solutions with poor stability performance, e.g. prone to buckling. A valid alternative is to include the buckling parameter as a constraint in order to obtain final designs that fulfill this criterion. In this context, binary methods - which generates clear [0,1] designs - emerge as an effective approach to solve multiphysics problems, wherein precise definition of the structural boundary is essential. A challenging TO application that benefits from this class of methods are submerged structures, e.g. offshore industry components, which are subject to design-dependent loads and might present stability issues. This loading type imposes a constant change on fluid loading location, direction and magnitude, which is not trivial for optimization procedures. In this scenario, the aim of this work it to investigate the binary nature of the TOBS method by solving topology optimization problems that consider buckling constraints and design-dependent loads, characteristic of submerged structural systems. The proposed topology optimization problem has not been explored in the literature. The linear buckling implementation is verified through analytical methods, and a benchmark optimization problem for buckling-constrained formulation is solved for efficiency analysis. Numerical examples of pressure-loaded structures are optimized and investigated regarding the stability parameter effect when compared to classic compliance minimization solutions. Further discussions are held concerning the common issues associated with the buckling eigenproblem, as well as the main parameters adopted in the TOBS method. The proposed binary framework presented promising results by obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance designs. Computational time studies showed that the buckling sensitivities are the bottleneck of the optimization process and, thus, alternative techniques should be investigated. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3151/tde-22022022-114244/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256528953802752 |