Topology optimization of acoustic systems via the TOBS-GT method.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3151/tde-24052023-150518/ |
Resumo: | Topology optimization (TO) has been an active research area for over a century, and it is becoming more and more popular over the years in both academia and industry. One of the reasons of this growth is the rising computational power availability, that allows the usage of TO in increasingly complex real problems. The idea of the method is to find the entire structural layout (unknown a priori) with optimal performance regardless of the designers experience, thus offering a great design freedom in obtaining optimal structures. Although the TO procedures have reached a satisfactory level of maturity, one challenging scientific problem is how to set its framework to account for different physics. In this context, acoustics is identified as a topic open to research with few studies published up to date, when comparing to other physics. This project proposes and investigates the use of Topology Optimization of Binary Structures with Geometry Trimming (TOBS-GT) for solving acoustic problems. The TOBS-GT method combines binary design variables, sequential problem linearization, sensitivity filtering and an integer programming solver. The forward problem is solved via finite element analysis (FEA) and the sensitivities are computed with the adjoint method via automatic differentiation. The FEA mesh is separated from the optimization mesh, and the solid regions are removed from the analysis at each iteration to accurately model physical phenomena. The proposed methodology was applied to room acoustics and to an acoustic attenuator. Promising results were obtained, where the final topologies significantly reduced the sound pressure level in the objective domain. Studies show a relatively small computational time and that, as expected, the FEA is the bottleneck of the optimization process. For all cases proposed, the convergence criteria was met in quite few iterations, showing that the TOBS-GT approach can offer an advantage in this regard when comparing with classical TO methods. |
id |
USP_033f4f4ea163cc31a333f2f0fb31c9e3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24052023-150518 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Topology optimization of acoustic systems via the TOBS-GT method.Otimização topológica de sistemas acústicos utilizando o método TOBS-GT.AcousticsAcústicaBinary design variablesGeometry trimmingMétodo TOBSOtimização topológicaRecorte de geometriaTOBS methodTopology optimizationVariáveis bináriasTopology optimization (TO) has been an active research area for over a century, and it is becoming more and more popular over the years in both academia and industry. One of the reasons of this growth is the rising computational power availability, that allows the usage of TO in increasingly complex real problems. The idea of the method is to find the entire structural layout (unknown a priori) with optimal performance regardless of the designers experience, thus offering a great design freedom in obtaining optimal structures. Although the TO procedures have reached a satisfactory level of maturity, one challenging scientific problem is how to set its framework to account for different physics. In this context, acoustics is identified as a topic open to research with few studies published up to date, when comparing to other physics. This project proposes and investigates the use of Topology Optimization of Binary Structures with Geometry Trimming (TOBS-GT) for solving acoustic problems. The TOBS-GT method combines binary design variables, sequential problem linearization, sensitivity filtering and an integer programming solver. The forward problem is solved via finite element analysis (FEA) and the sensitivities are computed with the adjoint method via automatic differentiation. The FEA mesh is separated from the optimization mesh, and the solid regions are removed from the analysis at each iteration to accurately model physical phenomena. The proposed methodology was applied to room acoustics and to an acoustic attenuator. Promising results were obtained, where the final topologies significantly reduced the sound pressure level in the objective domain. Studies show a relatively small computational time and that, as expected, the FEA is the bottleneck of the optimization process. For all cases proposed, the convergence criteria was met in quite few iterations, showing that the TOBS-GT approach can offer an advantage in this regard when comparing with classical TO methods.A Otimização Topológica (OT) é um método computacional que vem ganhando cada vez mais notoriedade tanto no meio acadêmico, quanto no industrial. Esse crescimento se deve, em parte, aos avanços tecnológicos e ao consequente aumento da capacidade computacional, que permitem o uso de OT em problemas reais cada vez mais complexos. A ideia do método é criar um layout estrutural (desconhecido a priori) com ótimo desempenho independente da experiência do projetista, oferecendo assim grande liberdade de projeto na obtenção de estruturas ótimas. Embora os procedimentos de OT tenham alcançado um nível satisfatório de maturidade, um problema científico ainda desafiador nessa área ´e como adequar o método para conciliar diferentes físicas. Nesse contexto, a Otimização Topológica Acústica (OTA) ´e identificada como um tema aberto à pesquisa com poucos estudos publicados até o momento, quando comparado a outras físicas. Este projeto propõe e investiga o uso do método de Otimização Topológica de Estruturas Binárias com Recorte de Geometria (TOBS-GT do inglês Topology Optimization of Binary Structures with Geometry Trimming) para sistemas acústicos. O método TOBS-GT combina variáveis binárias, linearização sequencial, filtro de sensibilidade e programação linear inteira. O Método dos Elementos Finitos (MEF) é utilizado para resolver a análise acústica, as sensibilidades são computadas pelo método adjunto via diferenciação automática e a malha de MEF é separada da malha de otimização. As regiões sólidas são removidas do domínio de análise a cada iteração para maior precisão do modelo físico. A metodologia proposta foi utilizada para otimizar uma sala e um dispositivo atenuador sonoro. Resultados promissores foram obtidos, onde topologias finais reduziram significativamente o nível de pressão sonora no domínio objetivo. Estudos mostraram um tempo computacional relativamente curto e que, conforme esperado, o MEF ´e o gargalo do processo de otimização. Para todos os exemplos propostos, o critério de convergência foi atingido em poucas iterações, sugerindo que o método TOBS-GT possa oferecer maior vantagem neste quesito em comparação a outros métodos de OT.Biblioteca Digitais de Teses e Dissertações da USPSanches, Renato PicelliCastro, Thaís Almeida Ribeiro de2022-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3151/tde-24052023-150518/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-24052023-150518Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Topology optimization of acoustic systems via the TOBS-GT method. Otimização topológica de sistemas acústicos utilizando o método TOBS-GT. |
title |
Topology optimization of acoustic systems via the TOBS-GT method. |
spellingShingle |
Topology optimization of acoustic systems via the TOBS-GT method. Castro, Thaís Almeida Ribeiro de Acoustics Acústica Binary design variables Geometry trimming Método TOBS Otimização topológica Recorte de geometria TOBS method Topology optimization Variáveis binárias |
title_short |
Topology optimization of acoustic systems via the TOBS-GT method. |
title_full |
Topology optimization of acoustic systems via the TOBS-GT method. |
title_fullStr |
Topology optimization of acoustic systems via the TOBS-GT method. |
title_full_unstemmed |
Topology optimization of acoustic systems via the TOBS-GT method. |
title_sort |
Topology optimization of acoustic systems via the TOBS-GT method. |
author |
Castro, Thaís Almeida Ribeiro de |
author_facet |
Castro, Thaís Almeida Ribeiro de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sanches, Renato Picelli |
dc.contributor.author.fl_str_mv |
Castro, Thaís Almeida Ribeiro de |
dc.subject.por.fl_str_mv |
Acoustics Acústica Binary design variables Geometry trimming Método TOBS Otimização topológica Recorte de geometria TOBS method Topology optimization Variáveis binárias |
topic |
Acoustics Acústica Binary design variables Geometry trimming Método TOBS Otimização topológica Recorte de geometria TOBS method Topology optimization Variáveis binárias |
description |
Topology optimization (TO) has been an active research area for over a century, and it is becoming more and more popular over the years in both academia and industry. One of the reasons of this growth is the rising computational power availability, that allows the usage of TO in increasingly complex real problems. The idea of the method is to find the entire structural layout (unknown a priori) with optimal performance regardless of the designers experience, thus offering a great design freedom in obtaining optimal structures. Although the TO procedures have reached a satisfactory level of maturity, one challenging scientific problem is how to set its framework to account for different physics. In this context, acoustics is identified as a topic open to research with few studies published up to date, when comparing to other physics. This project proposes and investigates the use of Topology Optimization of Binary Structures with Geometry Trimming (TOBS-GT) for solving acoustic problems. The TOBS-GT method combines binary design variables, sequential problem linearization, sensitivity filtering and an integer programming solver. The forward problem is solved via finite element analysis (FEA) and the sensitivities are computed with the adjoint method via automatic differentiation. The FEA mesh is separated from the optimization mesh, and the solid regions are removed from the analysis at each iteration to accurately model physical phenomena. The proposed methodology was applied to room acoustics and to an acoustic attenuator. Promising results were obtained, where the final topologies significantly reduced the sound pressure level in the objective domain. Studies show a relatively small computational time and that, as expected, the FEA is the bottleneck of the optimization process. For all cases proposed, the convergence criteria was met in quite few iterations, showing that the TOBS-GT approach can offer an advantage in this regard when comparing with classical TO methods. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3151/tde-24052023-150518/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3151/tde-24052023-150518/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256533266595840 |