Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-123306/ |
Resumo: | Em [PoSp], foi aprovado que uma hipersuperfície compacta de dimensão n > OU = 4 do espaço euclidiano, sobre a qual age um grupo compacto de isometrias com co-homogeneidade 1 e órbitas principais umbílicas, é uma hipersuperfície de revolução. Em [Se], a hipótese de compacidade da variedade foi enfraquecida: o resultado anterior foi estendido a hipersuperfícies completas com um certo controle sobre a planaridade (introduziu-se o conceito de 'não-planaridade no infinito'). No nosso trabalho, estendemos o resultado de [Se] a hipersuperfícies do espaço hiperbólico, obtendo um teorema similar com alguns exemplos a mais (cf. Teorema 3.9) |
id |
USP_01f9714616bcdc66703a397e3048d523 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-123306 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbóliconot availableEspaços HiperbólicosGeometria DiferencialEm [PoSp], foi aprovado que uma hipersuperfície compacta de dimensão n > OU = 4 do espaço euclidiano, sobre a qual age um grupo compacto de isometrias com co-homogeneidade 1 e órbitas principais umbílicas, é uma hipersuperfície de revolução. Em [Se], a hipótese de compacidade da variedade foi enfraquecida: o resultado anterior foi estendido a hipersuperfícies completas com um certo controle sobre a planaridade (introduziu-se o conceito de 'não-planaridade no infinito'). No nosso trabalho, estendemos o resultado de [Se] a hipersuperfícies do espaço hiperbólico, obtendo um teorema similar com alguns exemplos a mais (cf. Teorema 3.9)Let 'M. SUP n' be a cohomogeneity one Riemannian manifold and let f : 'M. SUP n' 'seta'R. SUP n+1' be an isometric immersion. In [PoSp], for M compact and n '> OR =' 4, it was proved that if the principal orbits are umbilical in M, then f is a hypersurface of revolution. In [Se] this result was extended for complete hyperdurfaces with dimension n '> OR =' 3, assuming further a reasonable hypothesis on the flat portion of the manifold M (namely, the hypothesis of 'non-flatness at infinity'). Our purpose is to extend the above theorems for hypersurfaces of the hyperbolic space. We prove a similar result of [Se], obtaining also a class of non-rotational examples (see theorem 3.9)Biblioteca Digitais de Teses e Dissertações da USPAsperti, Antonio CarlosCaputi, Armando2000-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-123306/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:04:40Zoai:teses.usp.br:tde-20210729-123306Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:04:40Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico not available |
title |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico |
spellingShingle |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico Caputi, Armando Espaços Hiperbólicos Geometria Diferencial |
title_short |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico |
title_full |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico |
title_fullStr |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico |
title_full_unstemmed |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico |
title_sort |
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico |
author |
Caputi, Armando |
author_facet |
Caputi, Armando |
author_role |
author |
dc.contributor.none.fl_str_mv |
Asperti, Antonio Carlos |
dc.contributor.author.fl_str_mv |
Caputi, Armando |
dc.subject.por.fl_str_mv |
Espaços Hiperbólicos Geometria Diferencial |
topic |
Espaços Hiperbólicos Geometria Diferencial |
description |
Em [PoSp], foi aprovado que uma hipersuperfície compacta de dimensão n > OU = 4 do espaço euclidiano, sobre a qual age um grupo compacto de isometrias com co-homogeneidade 1 e órbitas principais umbílicas, é uma hipersuperfície de revolução. Em [Se], a hipótese de compacidade da variedade foi enfraquecida: o resultado anterior foi estendido a hipersuperfícies completas com um certo controle sobre a planaridade (introduziu-se o conceito de 'não-planaridade no infinito'). No nosso trabalho, estendemos o resultado de [Se] a hipersuperfícies do espaço hiperbólico, obtendo um teorema similar com alguns exemplos a mais (cf. Teorema 3.9) |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-12-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-123306/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-123306/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257208291590144 |