Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão

Detalhes bibliográficos
Autor(a) principal: Furukawa, Rogério Akiyoshi
Data de Publicação: 2003
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01082003-171816/
Resumo: Atualmente, a segurança computacional vem se tornando cada vez mais necessária devido ao grande crescimento das estatísticas que relatam os crimes computacionais. Uma das ferramentas utilizadas para aumentar o nível de segurança é conhecida como Sistemas de Detecção de Intrusão (SDI). A flexibilidade e usabilidade destes sistemas têm contribuído, consideravelmente, para o aumento da proteção dos ambientes computacionais. Como grande parte das intrusões seguem padrões bem definidos de comportamento em uma rede de computadores, as técnicas de classificação e clusterização de dados tendem a ser muito apropriadas para a obtenção de uma forma eficaz de resolver este tipo de problema. Neste trabalho será apresentado um modelo dinâmico de clusterização baseado em um mecanismo de movimentação dos dados. Apesar de ser uma técnica de clusterização de dados aplicável a qualquer tipo de dados, neste trabalho, este modelo será utilizado para a detecção de intrusão. A técnica apresentada neste trabalho obteve resultados de clusterização comparáveis com técnicas tradicionais. Além disso, a técnica proposta possui algumas vantagens sobre as técnicas tradicionais investigadas, como realização de clusterizações multi-escala e não necessidade de determinação do número inicial de clusters
id USP_02670b8b75c12172443a549c80799953
oai_identifier_str oai:teses.usp.br:tde-01082003-171816
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusãoAnálise dos componentes principaisClusterização de dadosData clusteringIntrusion detection systemsPrincipal analisys componentSistemas de detecção de intrusãoAtualmente, a segurança computacional vem se tornando cada vez mais necessária devido ao grande crescimento das estatísticas que relatam os crimes computacionais. Uma das ferramentas utilizadas para aumentar o nível de segurança é conhecida como Sistemas de Detecção de Intrusão (SDI). A flexibilidade e usabilidade destes sistemas têm contribuído, consideravelmente, para o aumento da proteção dos ambientes computacionais. Como grande parte das intrusões seguem padrões bem definidos de comportamento em uma rede de computadores, as técnicas de classificação e clusterização de dados tendem a ser muito apropriadas para a obtenção de uma forma eficaz de resolver este tipo de problema. Neste trabalho será apresentado um modelo dinâmico de clusterização baseado em um mecanismo de movimentação dos dados. Apesar de ser uma técnica de clusterização de dados aplicável a qualquer tipo de dados, neste trabalho, este modelo será utilizado para a detecção de intrusão. A técnica apresentada neste trabalho obteve resultados de clusterização comparáveis com técnicas tradicionais. Além disso, a técnica proposta possui algumas vantagens sobre as técnicas tradicionais investigadas, como realização de clusterizações multi-escala e não necessidade de determinação do número inicial de clustersNowadays, the computational security is becoming more and more necessary due to the large growth of the statistics that describe computer crimes. One of the tools used to increase the safety level is named Intrusion Detection Systems (IDS). The flexibility and usability of these systems have contributed, considerably, to increase the protection of computational environments. As large part of the intrusions follows behavior patterns very well defined in a computers network, techniques for data classification and clustering tend to be very appropriate to obtain an effective solutions to this problem. In this work, a dynamic clustering model based on a data movement mechanism are presented. In spite of a clustering technique applicable to any data type, in this work, this model will be applied to the detection intrusion. The technique presented in this work obtained clustering results comparable to those obtained by traditional techniques. Besides the proposed technique presents some advantages on the traditional techniques investigated, like multi-resolution clustering and no need to previously know the number of clustersBiblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoFurukawa, Rogério Akiyoshi2003-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-01082003-171816/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo somente para a comunidade da Universidade de São Paulo.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-01082003-171816Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
title Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
spellingShingle Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
Furukawa, Rogério Akiyoshi
Análise dos componentes principais
Clusterização de dados
Data clustering
Intrusion detection systems
Principal analisys component
Sistemas de detecção de intrusão
title_short Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
title_full Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
title_fullStr Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
title_full_unstemmed Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
title_sort Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão
author Furukawa, Rogério Akiyoshi
author_facet Furukawa, Rogério Akiyoshi
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
dc.contributor.author.fl_str_mv Furukawa, Rogério Akiyoshi
dc.subject.por.fl_str_mv Análise dos componentes principais
Clusterização de dados
Data clustering
Intrusion detection systems
Principal analisys component
Sistemas de detecção de intrusão
topic Análise dos componentes principais
Clusterização de dados
Data clustering
Intrusion detection systems
Principal analisys component
Sistemas de detecção de intrusão
description Atualmente, a segurança computacional vem se tornando cada vez mais necessária devido ao grande crescimento das estatísticas que relatam os crimes computacionais. Uma das ferramentas utilizadas para aumentar o nível de segurança é conhecida como Sistemas de Detecção de Intrusão (SDI). A flexibilidade e usabilidade destes sistemas têm contribuído, consideravelmente, para o aumento da proteção dos ambientes computacionais. Como grande parte das intrusões seguem padrões bem definidos de comportamento em uma rede de computadores, as técnicas de classificação e clusterização de dados tendem a ser muito apropriadas para a obtenção de uma forma eficaz de resolver este tipo de problema. Neste trabalho será apresentado um modelo dinâmico de clusterização baseado em um mecanismo de movimentação dos dados. Apesar de ser uma técnica de clusterização de dados aplicável a qualquer tipo de dados, neste trabalho, este modelo será utilizado para a detecção de intrusão. A técnica apresentada neste trabalho obteve resultados de clusterização comparáveis com técnicas tradicionais. Além disso, a técnica proposta possui algumas vantagens sobre as técnicas tradicionais investigadas, como realização de clusterizações multi-escala e não necessidade de determinação do número inicial de clusters
publishDate 2003
dc.date.none.fl_str_mv 2003-04-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01082003-171816/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01082003-171816/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo somente para a comunidade da Universidade de São Paulo.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo somente para a comunidade da Universidade de São Paulo.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256582068371456