Métodos estocásticos aplicados à transição de fase

Detalhes bibliográficos
Autor(a) principal: Chiappin, Jose Raimundo Novaes
Data de Publicação: 2005
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08122009-161152/
Resumo: A presente pesquisa se refere à aplicação dos métodos estocásticos para estudar fenômenos críticos em modelos de sistemas classificados como desordenados que apresentam transição de fase do tipo-ordem desordem. Essa pesquisa é definida tanto no quadro teórico da Mecânica Estatística dos fenômenos críticos e transição de fase de equilíbrio e fora de equilibrio, com os recursos associados à análise de escala de tamanho finito quanto no quadro dos recursos aos processos estocásticos markovianos, descritos pela equação-mestra e associados a técnicas essencialmente numéricas como o método estocástico computacional de Monte Carlo. Na primeira etapa desta pesquisa, os modelos estudados são da classe denominada de votante majoritário. Eles são indexados pelo número z de vizinhos mais próximos com spin central, tem dois estados e são construidos em redes quadradas. A evolução dinâmica é dada pela regra da maioria junto com regradfe desempate. Eles não satisfazem a propriedade do principio do balanceamento detalhado, portanto, são classificados como descrevendo fenômenos fora do equilíbrio. Contudo, eles satisfazem a propriedade de simetria de inversão de sinal, o que os coloca teoricamente na classe de universalidade do modelo de Ising. Desta forma, a evolução dinâmica desses modelos é estudada com os recursos da equação mestra ou equação de evolução. No entanto, essa abordagem teórica é feita apenas na aproximação de campo médio, a qual fornece, na solução estacionária, os valores clássicos para os parametros relevantes. Em contrapartida, os valores numéricos exatos para os valores do ponto crítico e dos expoentes críticos, que são não clássicos, é dada por meio do recurso ao método de simulação computacional e à análise de escala de tamanho finito. Esses valores confirmam o resultado teórico quanto à classe de universalidade para cada modelo específico. Na sequência, estudam-se as propriedades dos modelos resultantes da combinação convexa do votante majoritário. Os resultados são semelhantes aos anteriores. Um resultado extra permitido por essas combinações convexa éa construção de uma relação contínua entre o valor crítico indutor da transição de fase e o número de vizinhos. Neste contexto foi apresentada uma solução para o problema do modelo mais simples desta classe de modelos. Com o modelo mais simples ilustram-se as condições universais de transição de fase, em particular o papel da dimensão do sistema. Na segunda etapa da pesquisa, cvonstrí-se, então, outra classe de modelos do votante que, por analogia com o modelo de Ising, tem como estado fundamental a fasse antiferromagnética: a classe dos modelos do votante minoritário. Essa classe de modelos possue as mesmas propriedades da classe de modelos do votante majoritário e por isso obtem-se os mesmos resultados. A analogia com o modelo de Ising é levada um pouco mais longe com a construção de um análogo aos modelo +-J: a construção da combinação convexa do votante majoritário com o minoritário. Para esse novo modelo constrói-se tanto o diagrama com as três fases, ferromagnética, paramagnética e antiferromagnética quanto as concentrações críticas que as distinguem. Não se obtém uma possível fase de vidro de spin. Uma vez que os modelos do votante são originalmente tidos como sistemas desordenados, comparam-se, para um mesmo modelo, resultados obtidos pela aplicação de dois diferentes métodos de tratar os modelos de sistemas desordenados: o método temperado-\"quenched\" - e o método recozido - \"annealed\". Na terceira etapa desta pesquisa e na mesma linha dos modelos estocásticos irreversíveis tratados anteriormente, estuda-se ainda outro modelo, classificado como jogo espacial nos sítios de uma rede quadrada. Simulações mostram que além de dois estados absorventes ha\'também a presença de um estado ativo definido por uma densidade finita de cooperadores e não cooperadores e que esse modelo se encontra na classe de universalidade do modelo de percolação direcionada. Nesta mesma etapa, mas, agora, no contexto da Mecânica sStatística de Equilíbrio, aborda-se o modelo de Ising quântico unidimensional com campo transverso por meio de simulação de Monte Carlo.Com o uso do método estiocástico e por meio da curva do colapso calculam-se os valores do ponto crítico e dos expoentes críticos desse modelo.
id USP_02e56b2a19fb05c3918d5b3806923c25
oai_identifier_str oai:teses.usp.br:tde-08122009-161152
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Métodos estocásticos aplicados à transição de faseApplications of stochastic methods to phase transitioncooperationcritical phenomenaemergência da cooperaçaoIsing quânticomajority votermarkovian stochastic processmetodo Monte Carlominority voterMonte Carlo methodvontante majoritáriovotante minoritárioA presente pesquisa se refere à aplicação dos métodos estocásticos para estudar fenômenos críticos em modelos de sistemas classificados como desordenados que apresentam transição de fase do tipo-ordem desordem. Essa pesquisa é definida tanto no quadro teórico da Mecânica Estatística dos fenômenos críticos e transição de fase de equilíbrio e fora de equilibrio, com os recursos associados à análise de escala de tamanho finito quanto no quadro dos recursos aos processos estocásticos markovianos, descritos pela equação-mestra e associados a técnicas essencialmente numéricas como o método estocástico computacional de Monte Carlo. Na primeira etapa desta pesquisa, os modelos estudados são da classe denominada de votante majoritário. Eles são indexados pelo número z de vizinhos mais próximos com spin central, tem dois estados e são construidos em redes quadradas. A evolução dinâmica é dada pela regra da maioria junto com regradfe desempate. Eles não satisfazem a propriedade do principio do balanceamento detalhado, portanto, são classificados como descrevendo fenômenos fora do equilíbrio. Contudo, eles satisfazem a propriedade de simetria de inversão de sinal, o que os coloca teoricamente na classe de universalidade do modelo de Ising. Desta forma, a evolução dinâmica desses modelos é estudada com os recursos da equação mestra ou equação de evolução. No entanto, essa abordagem teórica é feita apenas na aproximação de campo médio, a qual fornece, na solução estacionária, os valores clássicos para os parametros relevantes. Em contrapartida, os valores numéricos exatos para os valores do ponto crítico e dos expoentes críticos, que são não clássicos, é dada por meio do recurso ao método de simulação computacional e à análise de escala de tamanho finito. Esses valores confirmam o resultado teórico quanto à classe de universalidade para cada modelo específico. Na sequência, estudam-se as propriedades dos modelos resultantes da combinação convexa do votante majoritário. Os resultados são semelhantes aos anteriores. Um resultado extra permitido por essas combinações convexa éa construção de uma relação contínua entre o valor crítico indutor da transição de fase e o número de vizinhos. Neste contexto foi apresentada uma solução para o problema do modelo mais simples desta classe de modelos. Com o modelo mais simples ilustram-se as condições universais de transição de fase, em particular o papel da dimensão do sistema. Na segunda etapa da pesquisa, cvonstrí-se, então, outra classe de modelos do votante que, por analogia com o modelo de Ising, tem como estado fundamental a fasse antiferromagnética: a classe dos modelos do votante minoritário. Essa classe de modelos possue as mesmas propriedades da classe de modelos do votante majoritário e por isso obtem-se os mesmos resultados. A analogia com o modelo de Ising é levada um pouco mais longe com a construção de um análogo aos modelo +-J: a construção da combinação convexa do votante majoritário com o minoritário. Para esse novo modelo constrói-se tanto o diagrama com as três fases, ferromagnética, paramagnética e antiferromagnética quanto as concentrações críticas que as distinguem. Não se obtém uma possível fase de vidro de spin. Uma vez que os modelos do votante são originalmente tidos como sistemas desordenados, comparam-se, para um mesmo modelo, resultados obtidos pela aplicação de dois diferentes métodos de tratar os modelos de sistemas desordenados: o método temperado-\"quenched\" - e o método recozido - \"annealed\". Na terceira etapa desta pesquisa e na mesma linha dos modelos estocásticos irreversíveis tratados anteriormente, estuda-se ainda outro modelo, classificado como jogo espacial nos sítios de uma rede quadrada. Simulações mostram que além de dois estados absorventes ha\'também a presença de um estado ativo definido por uma densidade finita de cooperadores e não cooperadores e que esse modelo se encontra na classe de universalidade do modelo de percolação direcionada. Nesta mesma etapa, mas, agora, no contexto da Mecânica sStatística de Equilíbrio, aborda-se o modelo de Ising quântico unidimensional com campo transverso por meio de simulação de Monte Carlo.Com o uso do método estiocástico e por meio da curva do colapso calculam-se os valores do ponto crítico e dos expoentes críticos desse modelo.This research refers to the applications of the stochastic methods to the study of the critical phenomena in models of systems classified as disordered that undergo phase transition of the order-disorder kind. This research is defined as in the theoretical framework of the Statistical mechanics of the equilibrium and non-equilibrium of the critical phenomena and phase transition with the resources associated to the analysis of finite-size scale, as in the frame of the resources of markovian stochastic process described by the master equation associated with essentially numerical techniques such as stochastic computational method of Monte Carlo.l In this first stage of this research, the studied models belong to the class of the majority voter. They are described by a lattice with spins in each site with two states. The dynamic of these models is described by the majority rule together with a rule for solving problems of indecision. These models do not obey the principle of microscopic reversibility therefore they are classified as describing phenomena of non-equilibrium. However, they satisfy the property of \"up-down\" symmetry which make theoretically belong to the universality class of the Ising model. The mean field approach to the master equation is done and the exact value is pursued by the use of the method of the computational simulation with theuse of the analysis of finite-size scale. The results obtained for the critical exponents support the hypothesis of universality class of these models. There are constructions of the convex combination of these models. A question is raised about the simplest model and a possible solution is presented. There is a search for another kind of majority voter, but with an antiferromagnetic ground state, which leads to the minority voter. It is also to be classified in the same universality class. A natural unfold of this research is making the convex combination of the minority and majority voter models by analogy with the Ising model +- J and ask for the phase diagram class.Some results are also obtained by comparing the quenched and annealed approach to a same majority voter model. Finally, there are two more applications of these methods for obtaining critical point and critical exponents. The first refers to a model with absorbing state which is classified in the universality class of direct percolation. The second refers to a quantum model with transverse field.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Mario Jose deChiappin, Jose Raimundo Novaes2005-01-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-08122009-161152/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:03Zoai:teses.usp.br:tde-08122009-161152Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Métodos estocásticos aplicados à transição de fase
Applications of stochastic methods to phase transition
title Métodos estocásticos aplicados à transição de fase
spellingShingle Métodos estocásticos aplicados à transição de fase
Chiappin, Jose Raimundo Novaes
cooperation
critical phenomena
emergência da cooperaçao
Ising quântico
majority voter
markovian stochastic process
metodo Monte Carlo
minority voter
Monte Carlo method
vontante majoritário
votante minoritário
title_short Métodos estocásticos aplicados à transição de fase
title_full Métodos estocásticos aplicados à transição de fase
title_fullStr Métodos estocásticos aplicados à transição de fase
title_full_unstemmed Métodos estocásticos aplicados à transição de fase
title_sort Métodos estocásticos aplicados à transição de fase
author Chiappin, Jose Raimundo Novaes
author_facet Chiappin, Jose Raimundo Novaes
author_role author
dc.contributor.none.fl_str_mv Oliveira, Mario Jose de
dc.contributor.author.fl_str_mv Chiappin, Jose Raimundo Novaes
dc.subject.por.fl_str_mv cooperation
critical phenomena
emergência da cooperaçao
Ising quântico
majority voter
markovian stochastic process
metodo Monte Carlo
minority voter
Monte Carlo method
vontante majoritário
votante minoritário
topic cooperation
critical phenomena
emergência da cooperaçao
Ising quântico
majority voter
markovian stochastic process
metodo Monte Carlo
minority voter
Monte Carlo method
vontante majoritário
votante minoritário
description A presente pesquisa se refere à aplicação dos métodos estocásticos para estudar fenômenos críticos em modelos de sistemas classificados como desordenados que apresentam transição de fase do tipo-ordem desordem. Essa pesquisa é definida tanto no quadro teórico da Mecânica Estatística dos fenômenos críticos e transição de fase de equilíbrio e fora de equilibrio, com os recursos associados à análise de escala de tamanho finito quanto no quadro dos recursos aos processos estocásticos markovianos, descritos pela equação-mestra e associados a técnicas essencialmente numéricas como o método estocástico computacional de Monte Carlo. Na primeira etapa desta pesquisa, os modelos estudados são da classe denominada de votante majoritário. Eles são indexados pelo número z de vizinhos mais próximos com spin central, tem dois estados e são construidos em redes quadradas. A evolução dinâmica é dada pela regra da maioria junto com regradfe desempate. Eles não satisfazem a propriedade do principio do balanceamento detalhado, portanto, são classificados como descrevendo fenômenos fora do equilíbrio. Contudo, eles satisfazem a propriedade de simetria de inversão de sinal, o que os coloca teoricamente na classe de universalidade do modelo de Ising. Desta forma, a evolução dinâmica desses modelos é estudada com os recursos da equação mestra ou equação de evolução. No entanto, essa abordagem teórica é feita apenas na aproximação de campo médio, a qual fornece, na solução estacionária, os valores clássicos para os parametros relevantes. Em contrapartida, os valores numéricos exatos para os valores do ponto crítico e dos expoentes críticos, que são não clássicos, é dada por meio do recurso ao método de simulação computacional e à análise de escala de tamanho finito. Esses valores confirmam o resultado teórico quanto à classe de universalidade para cada modelo específico. Na sequência, estudam-se as propriedades dos modelos resultantes da combinação convexa do votante majoritário. Os resultados são semelhantes aos anteriores. Um resultado extra permitido por essas combinações convexa éa construção de uma relação contínua entre o valor crítico indutor da transição de fase e o número de vizinhos. Neste contexto foi apresentada uma solução para o problema do modelo mais simples desta classe de modelos. Com o modelo mais simples ilustram-se as condições universais de transição de fase, em particular o papel da dimensão do sistema. Na segunda etapa da pesquisa, cvonstrí-se, então, outra classe de modelos do votante que, por analogia com o modelo de Ising, tem como estado fundamental a fasse antiferromagnética: a classe dos modelos do votante minoritário. Essa classe de modelos possue as mesmas propriedades da classe de modelos do votante majoritário e por isso obtem-se os mesmos resultados. A analogia com o modelo de Ising é levada um pouco mais longe com a construção de um análogo aos modelo +-J: a construção da combinação convexa do votante majoritário com o minoritário. Para esse novo modelo constrói-se tanto o diagrama com as três fases, ferromagnética, paramagnética e antiferromagnética quanto as concentrações críticas que as distinguem. Não se obtém uma possível fase de vidro de spin. Uma vez que os modelos do votante são originalmente tidos como sistemas desordenados, comparam-se, para um mesmo modelo, resultados obtidos pela aplicação de dois diferentes métodos de tratar os modelos de sistemas desordenados: o método temperado-\"quenched\" - e o método recozido - \"annealed\". Na terceira etapa desta pesquisa e na mesma linha dos modelos estocásticos irreversíveis tratados anteriormente, estuda-se ainda outro modelo, classificado como jogo espacial nos sítios de uma rede quadrada. Simulações mostram que além de dois estados absorventes ha\'também a presença de um estado ativo definido por uma densidade finita de cooperadores e não cooperadores e que esse modelo se encontra na classe de universalidade do modelo de percolação direcionada. Nesta mesma etapa, mas, agora, no contexto da Mecânica sStatística de Equilíbrio, aborda-se o modelo de Ising quântico unidimensional com campo transverso por meio de simulação de Monte Carlo.Com o uso do método estiocástico e por meio da curva do colapso calculam-se os valores do ponto crítico e dos expoentes críticos desse modelo.
publishDate 2005
dc.date.none.fl_str_mv 2005-01-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08122009-161152/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08122009-161152/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256817654038528