Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-141837/ |
Resumo: | Seja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização das curvas projetivas planas de grau 2 não singulares. Se car(k) ≠ 2, associamos a F(T) sua cúbica resolvente RF(T) e seu discriminante ΔF. Em seguida obtemos condições para GF ≅ C4 (vide Teorema 2.9), que é ocaso fundamental para determinação dos demais casos. Se car(k) = 2, procuramos determinar condições para GRF ≅ A3, associando ao polinômio RF(T) sua quadrática resolvente P(T) (vide a Proposição 2.13). Apos ter homogeneizado P(T), usamos uma das consequências do teorema de Bézout, a saber, uma curva algébrica projetiva plana C de grau 2 é irredutível se, e somente se, C não tem pontos singulares. Nesta dissertação obtemos resultados semelhantes com uma abordagem relativamente diferente daquela usada pelo autor R. Valentini. |
id |
USP_06d044aa3da2b453ed36a7a94bafed8e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12092017-141837 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitosGalois closures of quartic sub-fields of rational function fields over finite fieldsBézout theoremCorpo de funçõesCorpos finitosCubic resolventFinite fieldsFunction fieldsGalois theoryResolvente cúbicaTeorema de BézoutTeoria de GaloisSeja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização das curvas projetivas planas de grau 2 não singulares. Se car(k) ≠ 2, associamos a F(T) sua cúbica resolvente RF(T) e seu discriminante ΔF. Em seguida obtemos condições para GF ≅ C4 (vide Teorema 2.9), que é ocaso fundamental para determinação dos demais casos. Se car(k) = 2, procuramos determinar condições para GRF ≅ A3, associando ao polinômio RF(T) sua quadrática resolvente P(T) (vide a Proposição 2.13). Apos ter homogeneizado P(T), usamos uma das consequências do teorema de Bézout, a saber, uma curva algébrica projetiva plana C de grau 2 é irredutível se, e somente se, C não tem pontos singulares. Nesta dissertação obtemos resultados semelhantes com uma abordagem relativamente diferente daquela usada pelo autor R. Valentini.Let be p a prime, q = pe whit e ≥ 1 integer. Let a polynomial f (x) = x4+ax3+bx2+cx+d ∈ Fq[x], considering the polynomial F(T)=T4+aT3+bT2+cT +d, with y= f (x) over Fq(y)[T]. The purpose of the current research is to determine the numbers of polynomials f (x) which have its associated Galois group GF, this GF is isomorphic for each transitive subgroup (prefixed) of A4. This project is based on the article: Galois closures of quartic sub-fields of rational function fields, using auxiliary equations associated to the minimal polynomial F(T) of degrees 3 and 2 (DUMMIT, 1994); besides a characterization of non-singular projective plane curves of degree 2 was used. If car(k) ≠ 2, associated to F(T) the resolvent cubic RF(T) and its discriminant ΔF then conditions for GF are obtained as GF ≅ C4 which is the fundamental case for determining the other cases (Theorem 2.9). If car(k) = 2, to find conditions for GRF ≅ A3, associated to the polynomial RF(T) its resolvent quadratic p(T) (Proposition 2.13). Homogenizing p(T), one of the consequences of the Bezout theorem was applied. It is, a projective plane curve C, which grade 2, is irreducible if and only if C is smooth. In the current dissertation, similar results were obtained using a different approach developed by the author R. Valentini.Biblioteca Digitais de Teses e Dissertações da USPBorges Filho, Herivelto MartinsMonteza, David Alberto Saldaña2017-06-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-141837/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-12092017-141837Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos Galois closures of quartic sub-fields of rational function fields over finite fields |
title |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos |
spellingShingle |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos Monteza, David Alberto Saldaña Bézout theorem Corpo de funções Corpos finitos Cubic resolvent Finite fields Function fields Galois theory Resolvente cúbica Teorema de Bézout Teoria de Galois |
title_short |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos |
title_full |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos |
title_fullStr |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos |
title_full_unstemmed |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos |
title_sort |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos |
author |
Monteza, David Alberto Saldaña |
author_facet |
Monteza, David Alberto Saldaña |
author_role |
author |
dc.contributor.none.fl_str_mv |
Borges Filho, Herivelto Martins |
dc.contributor.author.fl_str_mv |
Monteza, David Alberto Saldaña |
dc.subject.por.fl_str_mv |
Bézout theorem Corpo de funções Corpos finitos Cubic resolvent Finite fields Function fields Galois theory Resolvente cúbica Teorema de Bézout Teoria de Galois |
topic |
Bézout theorem Corpo de funções Corpos finitos Cubic resolvent Finite fields Function fields Galois theory Resolvente cúbica Teorema de Bézout Teoria de Galois |
description |
Seja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização das curvas projetivas planas de grau 2 não singulares. Se car(k) ≠ 2, associamos a F(T) sua cúbica resolvente RF(T) e seu discriminante ΔF. Em seguida obtemos condições para GF ≅ C4 (vide Teorema 2.9), que é ocaso fundamental para determinação dos demais casos. Se car(k) = 2, procuramos determinar condições para GRF ≅ A3, associando ao polinômio RF(T) sua quadrática resolvente P(T) (vide a Proposição 2.13). Apos ter homogeneizado P(T), usamos uma das consequências do teorema de Bézout, a saber, uma curva algébrica projetiva plana C de grau 2 é irredutível se, e somente se, C não tem pontos singulares. Nesta dissertação obtemos resultados semelhantes com uma abordagem relativamente diferente daquela usada pelo autor R. Valentini. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-141837/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-141837/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256992417054720 |