Análise de modelos de regressão multiníveis simétricos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05072013-161440/ |
Resumo: | O uso de modelos multiníveis é uma alternativa interessante para analisar dados que estão estruturados de forma hierárquica, pois permite a obtenção de diferentes estimativas de parâmetros relativos a grupos distintos e, ao mesmo tempo, leva em consideração a dependência entre as observações em um mesmo grupo. Neste trabalho, desenvolvemos e aplicamos modelos de regressão multiníveis simétricos, a fim de fornecer alternativas ao modelo usual, sob normalidade. Além disso, apresentamos uma breve análise de diagnóstico e estudo de simulação. Como motivação, consideramos dados educacionais, a fim de avaliar se o número de reprovações no histórico escolar do aluno e a infraestrutura da escola são variáveis relevantes que afetam o baixo desempenho dos alunos do ensino básico na disciplina de Matemática |
id |
USP_092909edd877bbf7bc3d6730c743d630 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05072013-161440 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de modelos de regressão multiníveis simétricosAnalysis of symmetrical multilevel regression modelsDados educacionaisDistribuições simétricasEducational dataHierachical modelsModelos hierárquicosModelos multiníveisMultilevel regressionSymmetrical distributionO uso de modelos multiníveis é uma alternativa interessante para analisar dados que estão estruturados de forma hierárquica, pois permite a obtenção de diferentes estimativas de parâmetros relativos a grupos distintos e, ao mesmo tempo, leva em consideração a dependência entre as observações em um mesmo grupo. Neste trabalho, desenvolvemos e aplicamos modelos de regressão multiníveis simétricos, a fim de fornecer alternativas ao modelo usual, sob normalidade. Além disso, apresentamos uma breve análise de diagnóstico e estudo de simulação. Como motivação, consideramos dados educacionais, a fim de avaliar se o número de reprovações no histórico escolar do aluno e a infraestrutura da escola são variáveis relevantes que afetam o baixo desempenho dos alunos do ensino básico na disciplina de MatemáticaThe use of multilevel models is an interesting alternative to analyze data that is structured in a hierarchical manner, since it allows the obtention of different parameters estimates for distinct groups and, at the same time, it takes into account the dependence of observations in the same group. In this dissertation, we develop and apply symmetrical multilevel regression models, for the purpose of providing alternatives to the usual model, under normality. Furthermore we present a brief diagnostics analysis and a simulation study. As motivation, we consider educational data in order to assess whether the number of failures in school history of students and the school infrastructure are important variables that affect the low performance of elementary school students in MathematicsBiblioteca Digitais de Teses e Dissertações da USPNoveli, Cibele Maria RussoOsio, Marina Mitie Gishifu2013-04-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-05072013-161440/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-05072013-161440Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de modelos de regressão multiníveis simétricos Analysis of symmetrical multilevel regression models |
title |
Análise de modelos de regressão multiníveis simétricos |
spellingShingle |
Análise de modelos de regressão multiníveis simétricos Osio, Marina Mitie Gishifu Dados educacionais Distribuições simétricas Educational data Hierachical models Modelos hierárquicos Modelos multiníveis Multilevel regression Symmetrical distribution |
title_short |
Análise de modelos de regressão multiníveis simétricos |
title_full |
Análise de modelos de regressão multiníveis simétricos |
title_fullStr |
Análise de modelos de regressão multiníveis simétricos |
title_full_unstemmed |
Análise de modelos de regressão multiníveis simétricos |
title_sort |
Análise de modelos de regressão multiníveis simétricos |
author |
Osio, Marina Mitie Gishifu |
author_facet |
Osio, Marina Mitie Gishifu |
author_role |
author |
dc.contributor.none.fl_str_mv |
Noveli, Cibele Maria Russo |
dc.contributor.author.fl_str_mv |
Osio, Marina Mitie Gishifu |
dc.subject.por.fl_str_mv |
Dados educacionais Distribuições simétricas Educational data Hierachical models Modelos hierárquicos Modelos multiníveis Multilevel regression Symmetrical distribution |
topic |
Dados educacionais Distribuições simétricas Educational data Hierachical models Modelos hierárquicos Modelos multiníveis Multilevel regression Symmetrical distribution |
description |
O uso de modelos multiníveis é uma alternativa interessante para analisar dados que estão estruturados de forma hierárquica, pois permite a obtenção de diferentes estimativas de parâmetros relativos a grupos distintos e, ao mesmo tempo, leva em consideração a dependência entre as observações em um mesmo grupo. Neste trabalho, desenvolvemos e aplicamos modelos de regressão multiníveis simétricos, a fim de fornecer alternativas ao modelo usual, sob normalidade. Além disso, apresentamos uma breve análise de diagnóstico e estudo de simulação. Como motivação, consideramos dados educacionais, a fim de avaliar se o número de reprovações no histórico escolar do aluno e a infraestrutura da escola são variáveis relevantes que afetam o baixo desempenho dos alunos do ensino básico na disciplina de Matemática |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05072013-161440/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05072013-161440/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256697967476736 |