Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092006-181011/ |
Resumo: | Uma das questões mais importantes em Teoria de Singularidades é a determinação de condições que garantam a trivialidade topológica em famílias de germes de funções ou aplicações. Neste trabalho é feito um estudo a fim de descrever condições necessárias e suficientes para a trivialidade topológica em famílias de germes de funções com singularidade isolada. Para isto, são apresentados dois métodos. O primeiro é o de campos de vetores controlados, baseado nos trabalhos de Damon-Gaffney e Yoshinaga. O segundo relaciona invariantes associados às famílias de germes de funções com a trivialidade topológica destas. Em ambos os casos, a principal ferramenta é a construção de poliedros de Newton associados às famílias. |
id |
USP_094967fdc1d9f67d7e8a14ff40fcbee1 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01092006-181011 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Trivialidade topológica em germes de hipersuperfícies e poliedros de NewtonTopological triviality in germs of hypersufaces and Newton polyhedraNewton polyhedrapoliedros Newtontopological trivialitytrivialidade topológicaUma das questões mais importantes em Teoria de Singularidades é a determinação de condições que garantam a trivialidade topológica em famílias de germes de funções ou aplicações. Neste trabalho é feito um estudo a fim de descrever condições necessárias e suficientes para a trivialidade topológica em famílias de germes de funções com singularidade isolada. Para isto, são apresentados dois métodos. O primeiro é o de campos de vetores controlados, baseado nos trabalhos de Damon-Gaffney e Yoshinaga. O segundo relaciona invariantes associados às famílias de germes de funções com a trivialidade topológica destas. Em ambos os casos, a principal ferramenta é a construção de poliedros de Newton associados às famílias.One of the most important questions in Theory of Singularities is the determination of conditions that guarantee the topological triviality in families of germs of functions or mappings. In this work a study is made in order to describe necessaries and sufficients conditions for the topological triviality in families of germs of functions with isolated singularity. For this, two methods are presented. The first one is controlled vectors fields method, based on the works of Damon-Gaffney and Yoshinaga. The second relates invariants associated with families of germs of functions with the topological triviality of these. In both cases, the main tool used is the construction of Newton polyhedra associated with families.Biblioteca Digitais de Teses e Dissertações da USPSaia, Marcelo JoséSilva, Gabriela Castro Vieira da2006-01-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092006-181011/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-01092006-181011Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton Topological triviality in germs of hypersufaces and Newton polyhedra |
title |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton |
spellingShingle |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton Silva, Gabriela Castro Vieira da Newton polyhedra poliedros Newton topological triviality trivialidade topológica |
title_short |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton |
title_full |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton |
title_fullStr |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton |
title_full_unstemmed |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton |
title_sort |
Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton |
author |
Silva, Gabriela Castro Vieira da |
author_facet |
Silva, Gabriela Castro Vieira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Saia, Marcelo José |
dc.contributor.author.fl_str_mv |
Silva, Gabriela Castro Vieira da |
dc.subject.por.fl_str_mv |
Newton polyhedra poliedros Newton topological triviality trivialidade topológica |
topic |
Newton polyhedra poliedros Newton topological triviality trivialidade topológica |
description |
Uma das questões mais importantes em Teoria de Singularidades é a determinação de condições que garantam a trivialidade topológica em famílias de germes de funções ou aplicações. Neste trabalho é feito um estudo a fim de descrever condições necessárias e suficientes para a trivialidade topológica em famílias de germes de funções com singularidade isolada. Para isto, são apresentados dois métodos. O primeiro é o de campos de vetores controlados, baseado nos trabalhos de Damon-Gaffney e Yoshinaga. O segundo relaciona invariantes associados às famílias de germes de funções com a trivialidade topológica destas. Em ambos os casos, a principal ferramenta é a construção de poliedros de Newton associados às famílias. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092006-181011/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092006-181011/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256584785231872 |