Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/ |
Resumo: | The current increase in world population and standard of living is taking its toll on the planet\'s resources. The circular bioeconomy concept comes to spark the use of renewable biological resources to generate bio-based products, in order to reduce the use of fossil fuels and create a more sustainable way of living. In this context, microorganisms that can produce highly valuable chemicals using renewable feedstock are in high demand for applications in biorefineries. The combination of synthetic biology, bioinformatics and metabolic engineering strategies allows the optimization of hosts that can become microbial cell factories. The non-conventional yeast Rhodosporidium toruloides is one of the microorganisms with great potential to be applied for this purpose, since it is able to grow in a wide range of substrates and to withstand some of the stresses caused by bioprocesses. Thus, this work sought to understand transcriptional behaviors of R. toruloides when growing in stress-related conditions and with sugarcane as substrate, using RNA sequencing. A bioinformatic pipeline was then developed aiming the discovery of novel cis-regulatory elements from the yeast transcriptomic data, a tool that can be applied to other microbial hosts in the future. This work also ventured at producing valuable chemicals using R. toruloides as a host, applying metabolic engineering techniques and using state-of-the-art assembly methods. Three important terpenes were chosen for this production: pinene, linalool and geraniol. Although they were not detected, the Design, Build, Test, Learn cycle was successfully applied to reveal what can be improved in future endeavors. This work demonstrates methods for the interpretation of transcriptomic data, the detection of regulatory elements in nonconventional organisms, and the engineering of hosts to produce valuable chemicals. These strategies can be further optimized to create microbial cell factories for production of valuable chemicals in a green, renewable way, bringing our world to a more sustainable reality. |
id |
USP_095dab9d67586b2fb05f2f17a06b850a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11042023-094354 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical productionBiologia sintética aplicada a Rhodosporidium toruloides para produção de químicos finosBiologia sintéticaCana-de-açúcarEngenharia metabólicaFatores de transcriçãoFungiFungosGeraniolGeraniolLinalolLinaloolMetabolic engineeringMonoterpeneMonoterpenoPinenePinenoSugarcaneSynthetic biologyTranscription factorsTranscriptômicaTranscriptomicsThe current increase in world population and standard of living is taking its toll on the planet\'s resources. The circular bioeconomy concept comes to spark the use of renewable biological resources to generate bio-based products, in order to reduce the use of fossil fuels and create a more sustainable way of living. In this context, microorganisms that can produce highly valuable chemicals using renewable feedstock are in high demand for applications in biorefineries. The combination of synthetic biology, bioinformatics and metabolic engineering strategies allows the optimization of hosts that can become microbial cell factories. The non-conventional yeast Rhodosporidium toruloides is one of the microorganisms with great potential to be applied for this purpose, since it is able to grow in a wide range of substrates and to withstand some of the stresses caused by bioprocesses. Thus, this work sought to understand transcriptional behaviors of R. toruloides when growing in stress-related conditions and with sugarcane as substrate, using RNA sequencing. A bioinformatic pipeline was then developed aiming the discovery of novel cis-regulatory elements from the yeast transcriptomic data, a tool that can be applied to other microbial hosts in the future. This work also ventured at producing valuable chemicals using R. toruloides as a host, applying metabolic engineering techniques and using state-of-the-art assembly methods. Three important terpenes were chosen for this production: pinene, linalool and geraniol. Although they were not detected, the Design, Build, Test, Learn cycle was successfully applied to reveal what can be improved in future endeavors. This work demonstrates methods for the interpretation of transcriptomic data, the detection of regulatory elements in nonconventional organisms, and the engineering of hosts to produce valuable chemicals. These strategies can be further optimized to create microbial cell factories for production of valuable chemicals in a green, renewable way, bringing our world to a more sustainable reality.O aumento da população mundial e dos padrões de vida está afetando os recursos do planeta. O conceito de bioeconomia circular estimula o uso de recursos biológicos renováveis para gerar produtos de base biológica, de forma a reduzir o uso de combustíveis fósseis e criar um modo de vida mais sustentável. Neste contexto, microrganismos que podem produzir químicos finos a partir de matéria-prima renovável estão em alta demanda para aplicações em biorrefinarias. A combinação de estratégias de biologia sintética, bioinformática e engenharia metabólica permite a otimização de organismos hospedeiros com potencial para se tornarem fábricas microbianas. A levedura não convencional Rhodosporidium toruloides é um dos microrganismos com grande potencial para ser aplicada para este propósito, pois é capaz de crescer em uma ampla gama de substratos e suportar alguns dos estresses causados por bioprocessos. Portanto, este trabalho buscou entender os comportamentos transcricionais de R. toruloides cultivado em condições de estresse e utilizando caldo de cana-de-açúcar como substrato, através do sequenciamento de RNA. Um pipeline de bioinformática foi desenvolvido, visando a descoberta de novos elementos cis-regulatórios a partir dos dados de transcriptômica, e essa ferramenta pode ser aplicada a outros hospedeiros microbianos no futuro. Este trabalho também se aventurou na produção de químicos finos, tendo R. toruloides como hospedeiro e aplicando técnicas de engenharia metabólica e métodos de assembly de última geração. Três importantes terpenos foram escolhidos: pineno, linalol e geraniol. Embora os terpenos não tenham sido detectados, o ciclo de \"Design, Build, Test, Learn\" foi aplicado com sucesso para revelar o que pode ser aprimorado em tentativas futuras. Este trabalho demonstra métodos para a interpretação de dados de transcriptômica, a detecção de elementos regulatórios em organismos não convencionais e a engenharia de microrganismos para produzir químicos finos. Essas estratégias ainda podem ser otimizadas para criar fábricas microbianas para produção renovável de químicos finos, trazendo nosso mundo para uma realidade mais sustentável.Biblioteca Digitais de Teses e Dissertações da USPSilva, Ricardo Roberto daNora, Luísa Czamanski2023-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-13T14:20:19Zoai:teses.usp.br:tde-11042023-094354Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-13T14:20:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production Biologia sintética aplicada a Rhodosporidium toruloides para produção de químicos finos |
title |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production |
spellingShingle |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production Nora, Luísa Czamanski Biologia sintética Cana-de-açúcar Engenharia metabólica Fatores de transcrição Fungi Fungos Geraniol Geraniol Linalol Linalool Metabolic engineering Monoterpene Monoterpeno Pinene Pineno Sugarcane Synthetic biology Transcription factors Transcriptômica Transcriptomics |
title_short |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production |
title_full |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production |
title_fullStr |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production |
title_full_unstemmed |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production |
title_sort |
Synthetic biology applied to Rhodosporidium toruloides for fine chemical production |
author |
Nora, Luísa Czamanski |
author_facet |
Nora, Luísa Czamanski |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Ricardo Roberto da |
dc.contributor.author.fl_str_mv |
Nora, Luísa Czamanski |
dc.subject.por.fl_str_mv |
Biologia sintética Cana-de-açúcar Engenharia metabólica Fatores de transcrição Fungi Fungos Geraniol Geraniol Linalol Linalool Metabolic engineering Monoterpene Monoterpeno Pinene Pineno Sugarcane Synthetic biology Transcription factors Transcriptômica Transcriptomics |
topic |
Biologia sintética Cana-de-açúcar Engenharia metabólica Fatores de transcrição Fungi Fungos Geraniol Geraniol Linalol Linalool Metabolic engineering Monoterpene Monoterpeno Pinene Pineno Sugarcane Synthetic biology Transcription factors Transcriptômica Transcriptomics |
description |
The current increase in world population and standard of living is taking its toll on the planet\'s resources. The circular bioeconomy concept comes to spark the use of renewable biological resources to generate bio-based products, in order to reduce the use of fossil fuels and create a more sustainable way of living. In this context, microorganisms that can produce highly valuable chemicals using renewable feedstock are in high demand for applications in biorefineries. The combination of synthetic biology, bioinformatics and metabolic engineering strategies allows the optimization of hosts that can become microbial cell factories. The non-conventional yeast Rhodosporidium toruloides is one of the microorganisms with great potential to be applied for this purpose, since it is able to grow in a wide range of substrates and to withstand some of the stresses caused by bioprocesses. Thus, this work sought to understand transcriptional behaviors of R. toruloides when growing in stress-related conditions and with sugarcane as substrate, using RNA sequencing. A bioinformatic pipeline was then developed aiming the discovery of novel cis-regulatory elements from the yeast transcriptomic data, a tool that can be applied to other microbial hosts in the future. This work also ventured at producing valuable chemicals using R. toruloides as a host, applying metabolic engineering techniques and using state-of-the-art assembly methods. Three important terpenes were chosen for this production: pinene, linalool and geraniol. Although they were not detected, the Design, Build, Test, Learn cycle was successfully applied to reveal what can be improved in future endeavors. This work demonstrates methods for the interpretation of transcriptomic data, the detection of regulatory elements in nonconventional organisms, and the engineering of hosts to produce valuable chemicals. These strategies can be further optimized to create microbial cell factories for production of valuable chemicals in a green, renewable way, bringing our world to a more sustainable reality. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/ |
url |
https://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256556751552512 |