Synthetic biology applied to Rhodosporidium toruloides for fine chemical production

Detalhes bibliográficos
Autor(a) principal: Nora, Luísa Czamanski
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/
Resumo: The current increase in world population and standard of living is taking its toll on the planet\'s resources. The circular bioeconomy concept comes to spark the use of renewable biological resources to generate bio-based products, in order to reduce the use of fossil fuels and create a more sustainable way of living. In this context, microorganisms that can produce highly valuable chemicals using renewable feedstock are in high demand for applications in biorefineries. The combination of synthetic biology, bioinformatics and metabolic engineering strategies allows the optimization of hosts that can become microbial cell factories. The non-conventional yeast Rhodosporidium toruloides is one of the microorganisms with great potential to be applied for this purpose, since it is able to grow in a wide range of substrates and to withstand some of the stresses caused by bioprocesses. Thus, this work sought to understand transcriptional behaviors of R. toruloides when growing in stress-related conditions and with sugarcane as substrate, using RNA sequencing. A bioinformatic pipeline was then developed aiming the discovery of novel cis-regulatory elements from the yeast transcriptomic data, a tool that can be applied to other microbial hosts in the future. This work also ventured at producing valuable chemicals using R. toruloides as a host, applying metabolic engineering techniques and using state-of-the-art assembly methods. Three important terpenes were chosen for this production: pinene, linalool and geraniol. Although they were not detected, the Design, Build, Test, Learn cycle was successfully applied to reveal what can be improved in future endeavors. This work demonstrates methods for the interpretation of transcriptomic data, the detection of regulatory elements in nonconventional organisms, and the engineering of hosts to produce valuable chemicals. These strategies can be further optimized to create microbial cell factories for production of valuable chemicals in a green, renewable way, bringing our world to a more sustainable reality.
id USP_095dab9d67586b2fb05f2f17a06b850a
oai_identifier_str oai:teses.usp.br:tde-11042023-094354
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Synthetic biology applied to Rhodosporidium toruloides for fine chemical productionBiologia sintética aplicada a Rhodosporidium toruloides para produção de químicos finosBiologia sintéticaCana-de-açúcarEngenharia metabólicaFatores de transcriçãoFungiFungosGeraniolGeraniolLinalolLinaloolMetabolic engineeringMonoterpeneMonoterpenoPinenePinenoSugarcaneSynthetic biologyTranscription factorsTranscriptômicaTranscriptomicsThe current increase in world population and standard of living is taking its toll on the planet\'s resources. The circular bioeconomy concept comes to spark the use of renewable biological resources to generate bio-based products, in order to reduce the use of fossil fuels and create a more sustainable way of living. In this context, microorganisms that can produce highly valuable chemicals using renewable feedstock are in high demand for applications in biorefineries. The combination of synthetic biology, bioinformatics and metabolic engineering strategies allows the optimization of hosts that can become microbial cell factories. The non-conventional yeast Rhodosporidium toruloides is one of the microorganisms with great potential to be applied for this purpose, since it is able to grow in a wide range of substrates and to withstand some of the stresses caused by bioprocesses. Thus, this work sought to understand transcriptional behaviors of R. toruloides when growing in stress-related conditions and with sugarcane as substrate, using RNA sequencing. A bioinformatic pipeline was then developed aiming the discovery of novel cis-regulatory elements from the yeast transcriptomic data, a tool that can be applied to other microbial hosts in the future. This work also ventured at producing valuable chemicals using R. toruloides as a host, applying metabolic engineering techniques and using state-of-the-art assembly methods. Three important terpenes were chosen for this production: pinene, linalool and geraniol. Although they were not detected, the Design, Build, Test, Learn cycle was successfully applied to reveal what can be improved in future endeavors. This work demonstrates methods for the interpretation of transcriptomic data, the detection of regulatory elements in nonconventional organisms, and the engineering of hosts to produce valuable chemicals. These strategies can be further optimized to create microbial cell factories for production of valuable chemicals in a green, renewable way, bringing our world to a more sustainable reality.O aumento da população mundial e dos padrões de vida está afetando os recursos do planeta. O conceito de bioeconomia circular estimula o uso de recursos biológicos renováveis para gerar produtos de base biológica, de forma a reduzir o uso de combustíveis fósseis e criar um modo de vida mais sustentável. Neste contexto, microrganismos que podem produzir químicos finos a partir de matéria-prima renovável estão em alta demanda para aplicações em biorrefinarias. A combinação de estratégias de biologia sintética, bioinformática e engenharia metabólica permite a otimização de organismos hospedeiros com potencial para se tornarem fábricas microbianas. A levedura não convencional Rhodosporidium toruloides é um dos microrganismos com grande potencial para ser aplicada para este propósito, pois é capaz de crescer em uma ampla gama de substratos e suportar alguns dos estresses causados por bioprocessos. Portanto, este trabalho buscou entender os comportamentos transcricionais de R. toruloides cultivado em condições de estresse e utilizando caldo de cana-de-açúcar como substrato, através do sequenciamento de RNA. Um pipeline de bioinformática foi desenvolvido, visando a descoberta de novos elementos cis-regulatórios a partir dos dados de transcriptômica, e essa ferramenta pode ser aplicada a outros hospedeiros microbianos no futuro. Este trabalho também se aventurou na produção de químicos finos, tendo R. toruloides como hospedeiro e aplicando técnicas de engenharia metabólica e métodos de assembly de última geração. Três importantes terpenos foram escolhidos: pineno, linalol e geraniol. Embora os terpenos não tenham sido detectados, o ciclo de \"Design, Build, Test, Learn\" foi aplicado com sucesso para revelar o que pode ser aprimorado em tentativas futuras. Este trabalho demonstra métodos para a interpretação de dados de transcriptômica, a detecção de elementos regulatórios em organismos não convencionais e a engenharia de microrganismos para produzir químicos finos. Essas estratégias ainda podem ser otimizadas para criar fábricas microbianas para produção renovável de químicos finos, trazendo nosso mundo para uma realidade mais sustentável.Biblioteca Digitais de Teses e Dissertações da USPSilva, Ricardo Roberto daNora, Luísa Czamanski2023-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-13T14:20:19Zoai:teses.usp.br:tde-11042023-094354Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-13T14:20:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
Biologia sintética aplicada a Rhodosporidium toruloides para produção de químicos finos
title Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
spellingShingle Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
Nora, Luísa Czamanski
Biologia sintética
Cana-de-açúcar
Engenharia metabólica
Fatores de transcrição
Fungi
Fungos
Geraniol
Geraniol
Linalol
Linalool
Metabolic engineering
Monoterpene
Monoterpeno
Pinene
Pineno
Sugarcane
Synthetic biology
Transcription factors
Transcriptômica
Transcriptomics
title_short Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
title_full Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
title_fullStr Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
title_full_unstemmed Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
title_sort Synthetic biology applied to Rhodosporidium toruloides for fine chemical production
author Nora, Luísa Czamanski
author_facet Nora, Luísa Czamanski
author_role author
dc.contributor.none.fl_str_mv Silva, Ricardo Roberto da
dc.contributor.author.fl_str_mv Nora, Luísa Czamanski
dc.subject.por.fl_str_mv Biologia sintética
Cana-de-açúcar
Engenharia metabólica
Fatores de transcrição
Fungi
Fungos
Geraniol
Geraniol
Linalol
Linalool
Metabolic engineering
Monoterpene
Monoterpeno
Pinene
Pineno
Sugarcane
Synthetic biology
Transcription factors
Transcriptômica
Transcriptomics
topic Biologia sintética
Cana-de-açúcar
Engenharia metabólica
Fatores de transcrição
Fungi
Fungos
Geraniol
Geraniol
Linalol
Linalool
Metabolic engineering
Monoterpene
Monoterpeno
Pinene
Pineno
Sugarcane
Synthetic biology
Transcription factors
Transcriptômica
Transcriptomics
description The current increase in world population and standard of living is taking its toll on the planet\'s resources. The circular bioeconomy concept comes to spark the use of renewable biological resources to generate bio-based products, in order to reduce the use of fossil fuels and create a more sustainable way of living. In this context, microorganisms that can produce highly valuable chemicals using renewable feedstock are in high demand for applications in biorefineries. The combination of synthetic biology, bioinformatics and metabolic engineering strategies allows the optimization of hosts that can become microbial cell factories. The non-conventional yeast Rhodosporidium toruloides is one of the microorganisms with great potential to be applied for this purpose, since it is able to grow in a wide range of substrates and to withstand some of the stresses caused by bioprocesses. Thus, this work sought to understand transcriptional behaviors of R. toruloides when growing in stress-related conditions and with sugarcane as substrate, using RNA sequencing. A bioinformatic pipeline was then developed aiming the discovery of novel cis-regulatory elements from the yeast transcriptomic data, a tool that can be applied to other microbial hosts in the future. This work also ventured at producing valuable chemicals using R. toruloides as a host, applying metabolic engineering techniques and using state-of-the-art assembly methods. Three important terpenes were chosen for this production: pinene, linalool and geraniol. Although they were not detected, the Design, Build, Test, Learn cycle was successfully applied to reveal what can be improved in future endeavors. This work demonstrates methods for the interpretation of transcriptomic data, the detection of regulatory elements in nonconventional organisms, and the engineering of hosts to produce valuable chemicals. These strategies can be further optimized to create microbial cell factories for production of valuable chemicals in a green, renewable way, bringing our world to a more sustainable reality.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/
url https://www.teses.usp.br/teses/disponiveis/17/17136/tde-11042023-094354/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256556751552512