Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.

Detalhes bibliográficos
Autor(a) principal: Resende, Marcos Ribeiro
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3138/tde-26112010-103822/
Resumo: Segundo a Agência Nacional de Transportes Terrestres (ANTT) em seu Anuário Estatístico dos Transportes Terrestres AETT (2008), o Brasil em todo o seu território possui 211.678 quilômetros de rodovias pavimentadas. O valor de serventia do pavimento diminui com o passar do tempo por dois fatores principais: o tráfego e as intempéries (BERNUCCI et al., 2008). Monitorar a condição de uso de toda a extensão das rodovias brasileiras é tarefa dispendiosa e demorada. A investigação de novas técnicas que permitam o levantamento da condição dos pavimentos de forma ágil e automática é parte da pesquisa deste trabalho. Nos últimos anos, um número crescente de imagens de alta resolução espacial tem surgido no mercado mundial com o aparecimento dos novos satélites e sensores aeroembarcados de sensoriamento remoto. Da mesma forma, imagens multiespectrais e até mesmo hiperespectrais estão sendo disponibilizadas comercialmente e para pesquisa científica. Neste trabalho são utilizadas imagens hiperespectrais de sensor digital aeroembarcado. Uma metodologia para identificação automática dos pavimentos asfaltados e classificação das principais ocorrências dos defeitos do asfalto foi desenvolvida. A primeira etapa da metodologia é a identificação do asfalto na imagem, utilizando uma classificação híbrida baseada inicialmente em pixel e depois refinada por objetos foi possível a extração da informação de asfalto das imagens disponíveis. A segunda etapa da metodologia é a identificação e classificação das ocorrências dos principais defeitos nos pavimentos flexíveis que são observáveis nas imagens de alta resolução espacial. Esta etapa faz uso intensivo das novas técnicas de classificação de imagens baseadas em objetos. O resultado final é a geração de índices da condição do pavimento, a partir das imagens, que possam ser comparados com os indicadores da qualidade da superfície do pavimento já normatizados pelos órgãos competentes no país.
id USP_0bb69672acfd8f63d4a820293ba6b3bc
oai_identifier_str oai:teses.usp.br:tde-26112010-103822
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.Investigation of use hyperspectral and high spatial resolution images from remote sensing in pavement surface condition monitoring.Asphalt pavementClassificação de imagemHyperspectral imageImage classificationImagem hiperespectralPavimentos asfálticosRemote sensingSensoriamento remotoSegundo a Agência Nacional de Transportes Terrestres (ANTT) em seu Anuário Estatístico dos Transportes Terrestres AETT (2008), o Brasil em todo o seu território possui 211.678 quilômetros de rodovias pavimentadas. O valor de serventia do pavimento diminui com o passar do tempo por dois fatores principais: o tráfego e as intempéries (BERNUCCI et al., 2008). Monitorar a condição de uso de toda a extensão das rodovias brasileiras é tarefa dispendiosa e demorada. A investigação de novas técnicas que permitam o levantamento da condição dos pavimentos de forma ágil e automática é parte da pesquisa deste trabalho. Nos últimos anos, um número crescente de imagens de alta resolução espacial tem surgido no mercado mundial com o aparecimento dos novos satélites e sensores aeroembarcados de sensoriamento remoto. Da mesma forma, imagens multiespectrais e até mesmo hiperespectrais estão sendo disponibilizadas comercialmente e para pesquisa científica. Neste trabalho são utilizadas imagens hiperespectrais de sensor digital aeroembarcado. Uma metodologia para identificação automática dos pavimentos asfaltados e classificação das principais ocorrências dos defeitos do asfalto foi desenvolvida. A primeira etapa da metodologia é a identificação do asfalto na imagem, utilizando uma classificação híbrida baseada inicialmente em pixel e depois refinada por objetos foi possível a extração da informação de asfalto das imagens disponíveis. A segunda etapa da metodologia é a identificação e classificação das ocorrências dos principais defeitos nos pavimentos flexíveis que são observáveis nas imagens de alta resolução espacial. Esta etapa faz uso intensivo das novas técnicas de classificação de imagens baseadas em objetos. O resultado final é a geração de índices da condição do pavimento, a partir das imagens, que possam ser comparados com os indicadores da qualidade da superfície do pavimento já normatizados pelos órgãos competentes no país.According to Statistical Survey of Land Transportation AETT (2008) of National Agency of Land Transportation (ANTT), Brazil has in its territory 211,678 kilometers of paved roads. The pavement Present Serviceability Ratio (PSR) value decreases over time by two main factors: traffic and weather (BERNUCCI et al., 2008). Monitor the condition of use of all Brazilian roads is expensive and time consuming task. The investigation of new techniques that allow a quick and automatic survey of pavement condition is part of this research. In recent years, an increasing number of images with high spatial resolution has emerged on the world market with the advent of new remote sensing satellites and airborne sensors. Similarly, multispectral and even hyperspectral imagery are become available commercially and for scientific research nowadays. Hyperspectral images from digital airborne sensor have been used in this work. A new methodology for automatic identification of asphalted pavement and also for classification of the main defects of the asphalt has been developed. The first step of the methodology is the identification of the asphalt in the image, using hybrid classification based on pixel initially and after improved by objects. Using this approach was feasible to extract asphalt information from the available images. The second step of the methodology is the identification and classification of the main defects of flexible pavement surface that are observable in high spatial resolution imagery. This step makes intensive use of new techniques for classification of images based on objects. The goal, is the generation of pavement surface condition index from the images that can be compared with quality index of pavement surface that are already regulated by the regulatory agency in the country.Biblioteca Digitais de Teses e Dissertações da USPQuintanilha, José AlbertoResende, Marcos Ribeiro2010-09-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3138/tde-26112010-103822/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-07-08T21:27:49Zoai:teses.usp.br:tde-26112010-103822Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-07-08T21:27:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
Investigation of use hyperspectral and high spatial resolution images from remote sensing in pavement surface condition monitoring.
title Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
spellingShingle Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
Resende, Marcos Ribeiro
Asphalt pavement
Classificação de imagem
Hyperspectral image
Image classification
Imagem hiperespectral
Pavimentos asfálticos
Remote sensing
Sensoriamento remoto
title_short Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
title_full Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
title_fullStr Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
title_full_unstemmed Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
title_sort Investigação do uso de imagens de sensor de sensoriamento remoto hiperespectral e com alta resolução espacial no monitoramento da condição de uso de pavimentos rodoviários.
author Resende, Marcos Ribeiro
author_facet Resende, Marcos Ribeiro
author_role author
dc.contributor.none.fl_str_mv Quintanilha, José Alberto
dc.contributor.author.fl_str_mv Resende, Marcos Ribeiro
dc.subject.por.fl_str_mv Asphalt pavement
Classificação de imagem
Hyperspectral image
Image classification
Imagem hiperespectral
Pavimentos asfálticos
Remote sensing
Sensoriamento remoto
topic Asphalt pavement
Classificação de imagem
Hyperspectral image
Image classification
Imagem hiperespectral
Pavimentos asfálticos
Remote sensing
Sensoriamento remoto
description Segundo a Agência Nacional de Transportes Terrestres (ANTT) em seu Anuário Estatístico dos Transportes Terrestres AETT (2008), o Brasil em todo o seu território possui 211.678 quilômetros de rodovias pavimentadas. O valor de serventia do pavimento diminui com o passar do tempo por dois fatores principais: o tráfego e as intempéries (BERNUCCI et al., 2008). Monitorar a condição de uso de toda a extensão das rodovias brasileiras é tarefa dispendiosa e demorada. A investigação de novas técnicas que permitam o levantamento da condição dos pavimentos de forma ágil e automática é parte da pesquisa deste trabalho. Nos últimos anos, um número crescente de imagens de alta resolução espacial tem surgido no mercado mundial com o aparecimento dos novos satélites e sensores aeroembarcados de sensoriamento remoto. Da mesma forma, imagens multiespectrais e até mesmo hiperespectrais estão sendo disponibilizadas comercialmente e para pesquisa científica. Neste trabalho são utilizadas imagens hiperespectrais de sensor digital aeroembarcado. Uma metodologia para identificação automática dos pavimentos asfaltados e classificação das principais ocorrências dos defeitos do asfalto foi desenvolvida. A primeira etapa da metodologia é a identificação do asfalto na imagem, utilizando uma classificação híbrida baseada inicialmente em pixel e depois refinada por objetos foi possível a extração da informação de asfalto das imagens disponíveis. A segunda etapa da metodologia é a identificação e classificação das ocorrências dos principais defeitos nos pavimentos flexíveis que são observáveis nas imagens de alta resolução espacial. Esta etapa faz uso intensivo das novas técnicas de classificação de imagens baseadas em objetos. O resultado final é a geração de índices da condição do pavimento, a partir das imagens, que possam ser comparados com os indicadores da qualidade da superfície do pavimento já normatizados pelos órgãos competentes no país.
publishDate 2010
dc.date.none.fl_str_mv 2010-09-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3138/tde-26112010-103822/
url http://www.teses.usp.br/teses/disponiveis/3/3138/tde-26112010-103822/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257386838917120