Evaluation of MCP anticancer activity using molecular imaging
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/85/85131/tde-24082023-114509/ |
Resumo: | MCP is a polysaccharide found abundantly in the plant\'s primary wall and shows activity in several areas of the food industry and nutrition, serving in food production, improving intestinal flow, reducing cholesterol, and being an important nutritional compound. MCP can also act as an anti-tumorigenic molecule in several types of tumors, in addition to avoiding chemoresistance, modulating the immune system, and preventing renal disease caused by radiotherapy and chemotherapy in cancer treatments. This study was divided into three main parts. In the first part, a review was carried out to study the biological activity of MCP and its contribution to cancer therapy, demonstrating treatment doses, types of MCP used, and experimental design, providing a critical view of the exposed data and its relationship with galectin-3 and other theories regarding its mechanisms. In the second part, we radiolabeled MCP with 99mTc and verified the biodistribution and pharmacokinetics of MCP-99mTc orally and intravenously (IV) administrated. First, the structure and monosaccharide composition of MCP were studied, and it was demonstrated that there is a diversity of monosaccharides and molecular weights within the MCP structure and that MCP30 and MCP3 fractions are rich in galactose. Next, we studied the inhibition and binding affinity of MCP for galectin-3 and demonstrated that MCP partially binds Gal-3 and that MCP3 shows an inhibition capacity at a concentration of 25 mg/ml. We radiolabeled MCP with 99mTc and verified its stability in saline in different pH, plasma, and in vivo. MCP-99mTc has a low gastrointestinal absorption (5.27x10-6 % total radioactivity counts) and gastrointestinal elimination when administered via oral and renal and hepatobiliary elimination when administered via IV. Finally, the blood compartment distribution assay showed that MCP-99mTc has a high affinity for plasma proteins and blood cells in C57BL/6 Lgals3 +/+ mice, and this affinity was partially lost when galectin-3 was deleted in C57BL/6 Lgals3 -/- mice. The pharmacokinetic assay showed that MCP-99mTc elimination speed was greater in the C57BL/6 Lgals3-/- mice than in the C57BL/6 Lgals3 +/+, indicating that a lack of galectin-3 increases MCP elimination. In the third part, we analyzed the behavior of MCP-99mTc in animals with SKOV-3 and MKN45 tumors using molecular imaging. First, we demonstrated that cell binding and internalization of MCP were only partially influenced by Galectin-3 expression in vitro using SKOV-3 scrambled and SKOV-3 shRNAGal3 cells (knockdown of Gal-3 expression). Next, we showed that MCP (20 mg/kg) exhibited anticancer activity in a SKOV-3 cell tumor xenograft model, reducing tumor growth by 48.5% and tumor weight by 50% when administered intravenously; however, oral administration of MCP (200 mg/kg) did not show an anticancer effect. Subsequently, we demonstrated that MCP-99mTc reached the tumor and bound to regions of necrosis in the SKOV-3 cell tumor xenograft model when administered intravenously. Finally, we demonstrated that IV administration of MCP (10 mg/kg) in mice with SKOV-3 tumors (lower expression of Gal-3) and MKN45 tumors (greater expression of Gal-3) reduced tumor growth by 58.7% and 35.4%, respectively, and reduced the tumor weight by 51.7% and 30.7 %, respectively. Furthermore, in both tumor xenografts, MCP-99mTc reached the tumor at the same proportion. These results demonstrate that MCP-99mTc radiolabeling is an important tool for studying the anticancer activity of MCP. We also showed that the data do not corroborate the hypothesis of the direct pharmacological effect of MCP exclusively targeting Gal-3, thus contributing to the knowledge of MCP anticancer activity. |
id |
USP_0efde7a2312e5a9a8126a24f0dabaf60 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24082023-114509 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Evaluation of MCP anticancer activity using molecular imagingAvaliação da atividade anticâncer de MCP utilizando imagem molecularanticancer activityatividade anticancerígenagalectin-3 proteinimagem molecularmodified citrus pectinmolecular imagingpectina cítrica modificadaproteína galectina-3MCP is a polysaccharide found abundantly in the plant\'s primary wall and shows activity in several areas of the food industry and nutrition, serving in food production, improving intestinal flow, reducing cholesterol, and being an important nutritional compound. MCP can also act as an anti-tumorigenic molecule in several types of tumors, in addition to avoiding chemoresistance, modulating the immune system, and preventing renal disease caused by radiotherapy and chemotherapy in cancer treatments. This study was divided into three main parts. In the first part, a review was carried out to study the biological activity of MCP and its contribution to cancer therapy, demonstrating treatment doses, types of MCP used, and experimental design, providing a critical view of the exposed data and its relationship with galectin-3 and other theories regarding its mechanisms. In the second part, we radiolabeled MCP with 99mTc and verified the biodistribution and pharmacokinetics of MCP-99mTc orally and intravenously (IV) administrated. First, the structure and monosaccharide composition of MCP were studied, and it was demonstrated that there is a diversity of monosaccharides and molecular weights within the MCP structure and that MCP30 and MCP3 fractions are rich in galactose. Next, we studied the inhibition and binding affinity of MCP for galectin-3 and demonstrated that MCP partially binds Gal-3 and that MCP3 shows an inhibition capacity at a concentration of 25 mg/ml. We radiolabeled MCP with 99mTc and verified its stability in saline in different pH, plasma, and in vivo. MCP-99mTc has a low gastrointestinal absorption (5.27x10-6 % total radioactivity counts) and gastrointestinal elimination when administered via oral and renal and hepatobiliary elimination when administered via IV. Finally, the blood compartment distribution assay showed that MCP-99mTc has a high affinity for plasma proteins and blood cells in C57BL/6 Lgals3 +/+ mice, and this affinity was partially lost when galectin-3 was deleted in C57BL/6 Lgals3 -/- mice. The pharmacokinetic assay showed that MCP-99mTc elimination speed was greater in the C57BL/6 Lgals3-/- mice than in the C57BL/6 Lgals3 +/+, indicating that a lack of galectin-3 increases MCP elimination. In the third part, we analyzed the behavior of MCP-99mTc in animals with SKOV-3 and MKN45 tumors using molecular imaging. First, we demonstrated that cell binding and internalization of MCP were only partially influenced by Galectin-3 expression in vitro using SKOV-3 scrambled and SKOV-3 shRNAGal3 cells (knockdown of Gal-3 expression). Next, we showed that MCP (20 mg/kg) exhibited anticancer activity in a SKOV-3 cell tumor xenograft model, reducing tumor growth by 48.5% and tumor weight by 50% when administered intravenously; however, oral administration of MCP (200 mg/kg) did not show an anticancer effect. Subsequently, we demonstrated that MCP-99mTc reached the tumor and bound to regions of necrosis in the SKOV-3 cell tumor xenograft model when administered intravenously. Finally, we demonstrated that IV administration of MCP (10 mg/kg) in mice with SKOV-3 tumors (lower expression of Gal-3) and MKN45 tumors (greater expression of Gal-3) reduced tumor growth by 58.7% and 35.4%, respectively, and reduced the tumor weight by 51.7% and 30.7 %, respectively. Furthermore, in both tumor xenografts, MCP-99mTc reached the tumor at the same proportion. These results demonstrate that MCP-99mTc radiolabeling is an important tool for studying the anticancer activity of MCP. We also showed that the data do not corroborate the hypothesis of the direct pharmacological effect of MCP exclusively targeting Gal-3, thus contributing to the knowledge of MCP anticancer activity.O MCP é um polissacarídeo encontrado abundantemente na parede primária de células vegetais e apresenta atividade em diversas áreas da indústria de alimentos e na nutrição, servindo como alimento, melhorando o fluxo intestinal, reduzindo o colesterol e sendo um importante composto nutricional. MCP também pode atuar como molécula anti-tumorigênica em diversos tipos de tumores, além de evitar a quimiorresistência, modular o sistema imunológico e prevenir doenças renais causadas por radioterapia e quimioterapia em tratamentos oncológicos. Este estudo foi dividido em três partes principais. Na primeira parte, foi realizada uma revisão para estudar a atividade biológica de MCP e sua contribuição para a terapia do câncer, demonstrando doses de tratamento, tipos de MCP utilizados e desenho experimental, fornecendo uma visão crítica dos dados expostos e sua relação com a Galectina -3 e outras teorias sobre seus mecanismos. Na segunda parte, nós radiomarcamos MCP com 99mTc e verificamos sua biodistribuição e farmacocinética, na administração por via oral e intravenosa (IV). Inicialmente, a estrutura e a composição monossacarídica da MCP foram estudadas, e foi demonstrado que existe uma diversidade de monossacarídeos e pesos moleculares dentro da estrutura da MCP e que as frações MCP30 e MCP3 são ricas em galactose. Em seguida, estudamos a afinidade e a capacidade de inibição de MCP pela galectina-3 e demonstramos que a MCP se liga parcialmente à Gal-3 e que a MCP3 apresenta capacidade de inibição na concentração de 25 mg/ml. Marcamos radioativamente MCP com 99mTc e verificamos sua estabilidade em solução salina em diferentes pH, plasma e in vivo. O MCP-99mTc apresenta baixa absorção gastrointestinal (5,27x10-6 % da contagem total de radioatividade) e eliminação gastrointestinal quando administrado por via oral e eliminação renal e hepatobiliar quando administrado por via IV. Por fim, o ensaio de compartimentalização sanguínea mostrou que MCP-99mTc tem uma alta afinidade por proteínas plasmáticas e células sanguíneas em camundongos C57BL/6 Lgals3+/+, e essa afinidade foi parcialmente perdida quando a galectina-3 foi inibida em animais C57BL/6 Lgals3-/-. O estudo farmacocinético mostrou que a velocidade de eliminação de MCP-99mTc foi maior nos camundongos C57BL/6 Lgals3-/- do que nos animais C57BL/6 Lgals3+/+, indicando que a falta de galectina-3 aumenta a eliminação de MCP in vivo. Na terceira parte, analisamos o comportamento do MCP-99mTc em animais com tumores SKOV-3 e MKN45 usando imagem molecular. Inicialmente, demonstramos que a ligação celular e a internalização de MCP foram apenas parcialmente influenciadas pela expressão de Galectina-3 in vitro usando células SKOV-3 scrambled e SKOV-3 shRNAGal3 (knockdown para expressão de Gal-3). Em seguida, mostramos que o MCP (20 mg/kg) exibiu uma atividade anticancerígena em um modelo de xenoenxerto de tumor de células SKOV-3, reduzindo o crescimento do tumor em 48,5% e o peso do tumor em 50% quando administrado por via intravenosa; no entanto, a administração oral de MCP (200 mg/kg) não apresentou efeito anticancerígeno. Posteriormente, demonstramos que o MCP-99mTc atingiu o tumor e se ligou a regiões de necrose em xenoenxerto tumorais de células SKOV-3 quando administrado por via intravenosa. Por fim, demonstramos que a administração IV de MCP (10 mg/kg) em camundongos com tumores SKOV-3 (menor expressão de Gal-3) e tumores MKN45 (maior expressão de Gal-3) reduziu o crescimento tumoral em 58,7% e 35,4%, respectivamente, e reduziu o peso do tumor em 51,7% e 30,7%, respectivamente. Além disso, MCP-99mTc atingiu o tumor na mesma proporção em ambos os xenoenxertos tumorais. Esses resultados demonstram que a radiomarcação de MCP-99mTc é uma ferramenta importante para estudar a atividade anticancerígena de MCP. Também mostramos que os dados não corroboram a hipótese do efeito farmacológico direto de MCP visando exclusivamente a Gal-3, contribuindo assim para o conhecimento da atividade anticancerígena de MCP.Biblioteca Digitais de Teses e Dissertações da USPBernardes, Emerson SoaresSilva, Fábio Fernando Alves da2023-05-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/85/85131/tde-24082023-114509/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-25T11:55:02Zoai:teses.usp.br:tde-24082023-114509Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-25T11:55:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Evaluation of MCP anticancer activity using molecular imaging Avaliação da atividade anticâncer de MCP utilizando imagem molecular |
title |
Evaluation of MCP anticancer activity using molecular imaging |
spellingShingle |
Evaluation of MCP anticancer activity using molecular imaging Silva, Fábio Fernando Alves da anticancer activity atividade anticancerígena galectin-3 protein imagem molecular modified citrus pectin molecular imaging pectina cítrica modificada proteína galectina-3 |
title_short |
Evaluation of MCP anticancer activity using molecular imaging |
title_full |
Evaluation of MCP anticancer activity using molecular imaging |
title_fullStr |
Evaluation of MCP anticancer activity using molecular imaging |
title_full_unstemmed |
Evaluation of MCP anticancer activity using molecular imaging |
title_sort |
Evaluation of MCP anticancer activity using molecular imaging |
author |
Silva, Fábio Fernando Alves da |
author_facet |
Silva, Fábio Fernando Alves da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bernardes, Emerson Soares |
dc.contributor.author.fl_str_mv |
Silva, Fábio Fernando Alves da |
dc.subject.por.fl_str_mv |
anticancer activity atividade anticancerígena galectin-3 protein imagem molecular modified citrus pectin molecular imaging pectina cítrica modificada proteína galectina-3 |
topic |
anticancer activity atividade anticancerígena galectin-3 protein imagem molecular modified citrus pectin molecular imaging pectina cítrica modificada proteína galectina-3 |
description |
MCP is a polysaccharide found abundantly in the plant\'s primary wall and shows activity in several areas of the food industry and nutrition, serving in food production, improving intestinal flow, reducing cholesterol, and being an important nutritional compound. MCP can also act as an anti-tumorigenic molecule in several types of tumors, in addition to avoiding chemoresistance, modulating the immune system, and preventing renal disease caused by radiotherapy and chemotherapy in cancer treatments. This study was divided into three main parts. In the first part, a review was carried out to study the biological activity of MCP and its contribution to cancer therapy, demonstrating treatment doses, types of MCP used, and experimental design, providing a critical view of the exposed data and its relationship with galectin-3 and other theories regarding its mechanisms. In the second part, we radiolabeled MCP with 99mTc and verified the biodistribution and pharmacokinetics of MCP-99mTc orally and intravenously (IV) administrated. First, the structure and monosaccharide composition of MCP were studied, and it was demonstrated that there is a diversity of monosaccharides and molecular weights within the MCP structure and that MCP30 and MCP3 fractions are rich in galactose. Next, we studied the inhibition and binding affinity of MCP for galectin-3 and demonstrated that MCP partially binds Gal-3 and that MCP3 shows an inhibition capacity at a concentration of 25 mg/ml. We radiolabeled MCP with 99mTc and verified its stability in saline in different pH, plasma, and in vivo. MCP-99mTc has a low gastrointestinal absorption (5.27x10-6 % total radioactivity counts) and gastrointestinal elimination when administered via oral and renal and hepatobiliary elimination when administered via IV. Finally, the blood compartment distribution assay showed that MCP-99mTc has a high affinity for plasma proteins and blood cells in C57BL/6 Lgals3 +/+ mice, and this affinity was partially lost when galectin-3 was deleted in C57BL/6 Lgals3 -/- mice. The pharmacokinetic assay showed that MCP-99mTc elimination speed was greater in the C57BL/6 Lgals3-/- mice than in the C57BL/6 Lgals3 +/+, indicating that a lack of galectin-3 increases MCP elimination. In the third part, we analyzed the behavior of MCP-99mTc in animals with SKOV-3 and MKN45 tumors using molecular imaging. First, we demonstrated that cell binding and internalization of MCP were only partially influenced by Galectin-3 expression in vitro using SKOV-3 scrambled and SKOV-3 shRNAGal3 cells (knockdown of Gal-3 expression). Next, we showed that MCP (20 mg/kg) exhibited anticancer activity in a SKOV-3 cell tumor xenograft model, reducing tumor growth by 48.5% and tumor weight by 50% when administered intravenously; however, oral administration of MCP (200 mg/kg) did not show an anticancer effect. Subsequently, we demonstrated that MCP-99mTc reached the tumor and bound to regions of necrosis in the SKOV-3 cell tumor xenograft model when administered intravenously. Finally, we demonstrated that IV administration of MCP (10 mg/kg) in mice with SKOV-3 tumors (lower expression of Gal-3) and MKN45 tumors (greater expression of Gal-3) reduced tumor growth by 58.7% and 35.4%, respectively, and reduced the tumor weight by 51.7% and 30.7 %, respectively. Furthermore, in both tumor xenografts, MCP-99mTc reached the tumor at the same proportion. These results demonstrate that MCP-99mTc radiolabeling is an important tool for studying the anticancer activity of MCP. We also showed that the data do not corroborate the hypothesis of the direct pharmacological effect of MCP exclusively targeting Gal-3, thus contributing to the knowledge of MCP anticancer activity. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/85/85131/tde-24082023-114509/ |
url |
https://www.teses.usp.br/teses/disponiveis/85/85131/tde-24082023-114509/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257312715079680 |