Atomic scale modelling of organic electrode materials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/43/43134/tde-19102023-232737/ |
Resumo: | Due to several environmental issues related to the high consumption of energy, the search for higher energy storage and environmentally friendly devices was necessary. The Li-ion batteries are commercially used and known for its great efficiency. However, most commercially used batteries are all inorganic. Hence, some compounds found in these batteries are harmful to the environment and hardly recyclable. In this sense, organic lithium batteries have showed to be a good alternative to the well known batteries. There are many challenges that need to be overcome for the commercially use of an organic battery. These issues are intrinsically connected to the electrochemical properties of the electrode. In this master thesis, we analyzed and simulated, at atomic level, the changes in the organic electrode properties by changing the \"spectator cation\" in the material structure. In order to predict the crystalline structure of the materials, we performed the genetic algorithm, USPEX, interchanged with calculations in the framework of Density Functional Theory (DFT) performed by VASP software. Furthermore, the voltage, the density of states (DOS) and the partial charge related to each lithiation step was calculated. The electrode is composed by the ligand DHT (terephthalate), lithium ions and the spectator cations (Mg+2, Na+, Ca+2). The calculated voltages for the materials MgLi2DHT, Na2Li2DHT and CaLi2DHT, were respectively 3,59 V, 2,96 V and 2,98 V. The density of states (DOS) shows the material\'s reaction to receiving an electron. On the other hand, the Bader charge analysis shows the charge difference for each part of the material when compared to the other ions. Our obtained results agree with previous experimental results. Successfully, we simulated the voltage rise for the battery material with the magnesium ion, and we obtained a greater understanding of the structure and electronic properties for the studied organic electrodes. |
id |
USP_1052a13bb6056d4f47ff186b6a9c82fd |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19102023-232737 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Atomic scale modelling of organic electrode materialsSimulação computacional de eletrodos orgânicosalgoritmo genéticobaterias orgânicasDFTDFTgenetic algorithmlithiumlítioorganic batteriesDue to several environmental issues related to the high consumption of energy, the search for higher energy storage and environmentally friendly devices was necessary. The Li-ion batteries are commercially used and known for its great efficiency. However, most commercially used batteries are all inorganic. Hence, some compounds found in these batteries are harmful to the environment and hardly recyclable. In this sense, organic lithium batteries have showed to be a good alternative to the well known batteries. There are many challenges that need to be overcome for the commercially use of an organic battery. These issues are intrinsically connected to the electrochemical properties of the electrode. In this master thesis, we analyzed and simulated, at atomic level, the changes in the organic electrode properties by changing the \"spectator cation\" in the material structure. In order to predict the crystalline structure of the materials, we performed the genetic algorithm, USPEX, interchanged with calculations in the framework of Density Functional Theory (DFT) performed by VASP software. Furthermore, the voltage, the density of states (DOS) and the partial charge related to each lithiation step was calculated. The electrode is composed by the ligand DHT (terephthalate), lithium ions and the spectator cations (Mg+2, Na+, Ca+2). The calculated voltages for the materials MgLi2DHT, Na2Li2DHT and CaLi2DHT, were respectively 3,59 V, 2,96 V and 2,98 V. The density of states (DOS) shows the material\'s reaction to receiving an electron. On the other hand, the Bader charge analysis shows the charge difference for each part of the material when compared to the other ions. Our obtained results agree with previous experimental results. Successfully, we simulated the voltage rise for the battery material with the magnesium ion, and we obtained a greater understanding of the structure and electronic properties for the studied organic electrodes.Com diversos problemas ambientais relacionados ao alto consumo global de energia, a busca por meios de armazenamento com maior capacidade e amigáveis ao meio ambiente se faz necessária. As baterias de Lítio são utilizadas comercialmente e conhecidas pela sua alta eficiência. Entretanto, atualmente essas baterias são totalmente inorgânicas. Ou seja, possuem compostos prejudiciais ao meio ambiente e são dificilmente recicláveis. Nesse contexto, as baterias orgânicas de Lítio têm se mostrado uma boa alternativa as baterias já existentes. Há ainda vários desafios que precisam ser superados para a comercialização de uma bateria orgânica. Esses problemas estão intrinsecamente ligados as propriedades eletroquímicas do eletrodo. Neste trabalho simulamos e analisamos, a nível atômico, as mudanças nas propriedades de um eletrodo orgânico ao se mudar o \"cátion espectador\" na estrutura da bateria. A fim prever a estrutura cristalina dos materiais abordados, empregamos o algoritmo genético, USPEX, intercalado com cálculos no esquema da Teoria do Funcional da Densidade (DFT) performados pelo software VASP. Posteriormente, foram calculadas a voltagem, a densidade de estados e carga relativas a cada estado de litiação do material. A bateria é composta pelo ligante DHT (terephthalate), íons de Lítio e os íons espectadores (Mg+2, Na+, Ca+2). As voltagens calculadas para MgLi2DHT, Na2Li2DHT e CaLi2DHT foram respectivamente 3,59 V, 2,96 V e 2,98 V. A Densidade de Estados (DOS) mostrou a ação do material ao receber um elétron. Por outro lado, a análise de carga nos mostra a diferenciação entre a carga em cada parte do material quando comparamos os diferentes íons. Os resultados obtidos condizem com resultados experimentais. Com sucesso, simulamos o aumento na voltagem da bateria com o íon de Magnésio e obtivemos um maior entendimento da estrutura e das propriedades eletrônicas dos eletrodos orgânicos aqui estudados.Biblioteca Digitais de Teses e Dissertações da USPAraujo, Carlos Moyses GraçaPetrilli, Helena MariaFernandes, Marcela Lopes2023-08-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-19102023-232737/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-11-09T18:32:03Zoai:teses.usp.br:tde-19102023-232737Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-11-09T18:32:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Atomic scale modelling of organic electrode materials Simulação computacional de eletrodos orgânicos |
title |
Atomic scale modelling of organic electrode materials |
spellingShingle |
Atomic scale modelling of organic electrode materials Fernandes, Marcela Lopes algoritmo genético baterias orgânicas DFT DFT genetic algorithm lithium lítio organic batteries |
title_short |
Atomic scale modelling of organic electrode materials |
title_full |
Atomic scale modelling of organic electrode materials |
title_fullStr |
Atomic scale modelling of organic electrode materials |
title_full_unstemmed |
Atomic scale modelling of organic electrode materials |
title_sort |
Atomic scale modelling of organic electrode materials |
author |
Fernandes, Marcela Lopes |
author_facet |
Fernandes, Marcela Lopes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Araujo, Carlos Moyses Graça Petrilli, Helena Maria |
dc.contributor.author.fl_str_mv |
Fernandes, Marcela Lopes |
dc.subject.por.fl_str_mv |
algoritmo genético baterias orgânicas DFT DFT genetic algorithm lithium lítio organic batteries |
topic |
algoritmo genético baterias orgânicas DFT DFT genetic algorithm lithium lítio organic batteries |
description |
Due to several environmental issues related to the high consumption of energy, the search for higher energy storage and environmentally friendly devices was necessary. The Li-ion batteries are commercially used and known for its great efficiency. However, most commercially used batteries are all inorganic. Hence, some compounds found in these batteries are harmful to the environment and hardly recyclable. In this sense, organic lithium batteries have showed to be a good alternative to the well known batteries. There are many challenges that need to be overcome for the commercially use of an organic battery. These issues are intrinsically connected to the electrochemical properties of the electrode. In this master thesis, we analyzed and simulated, at atomic level, the changes in the organic electrode properties by changing the \"spectator cation\" in the material structure. In order to predict the crystalline structure of the materials, we performed the genetic algorithm, USPEX, interchanged with calculations in the framework of Density Functional Theory (DFT) performed by VASP software. Furthermore, the voltage, the density of states (DOS) and the partial charge related to each lithiation step was calculated. The electrode is composed by the ligand DHT (terephthalate), lithium ions and the spectator cations (Mg+2, Na+, Ca+2). The calculated voltages for the materials MgLi2DHT, Na2Li2DHT and CaLi2DHT, were respectively 3,59 V, 2,96 V and 2,98 V. The density of states (DOS) shows the material\'s reaction to receiving an electron. On the other hand, the Bader charge analysis shows the charge difference for each part of the material when compared to the other ions. Our obtained results agree with previous experimental results. Successfully, we simulated the voltage rise for the battery material with the magnesium ion, and we obtained a greater understanding of the structure and electronic properties for the studied organic electrodes. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-19102023-232737/ |
url |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-19102023-232737/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257135566553088 |