Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas

Detalhes bibliográficos
Autor(a) principal: Silva, Carla Fernandes da
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/59/59143/tde-30062019-204038/
Resumo: Comorbidade é a coocorrência de dois ou mais distúrbios em uma pessoa. Identificar quais fatores genéticos ou quais são os mecanismos subjacentes à comorbidade é um grande desafio da ciência. Outra constatação relevante é que muitos pares de doenças que compartilham genes comuns não mostram comorbidade significativa nos registros clínicos. Vários estudos clínicos e epidemiológicos têm demonstrado que a comorbidade é uma situação médica universal porque pacientes com vários transtornos médicos são a regra e não a exceção. Neste trabalho, é proposta uma metodologia de predição de associação doença-doença por meio da integração de dados públicos sobre genes e sobre doenças e suas comorbidades. Analisando as redes formadas pelos genes e pelas doenças, a partir da utilização de cinco métodos de predição de links: Vizinhos Comuns, Adamic-Adar, Índice de Conexão Preferencial, Índice de Alocação de Recursos e Katz, a fim de encontrar novas relações de comorbidade. Como resultados foram criadas duas redes: uma rede epidemiológica chamada de rede_DATASUS com 1.941 nós e 248.508 arestas e uma rede gênica, rede_KEGG, com 288 nós e 1.983 arestas. E a predição em cima da rede_KEGG, e dentre as associações de doenças preditas e analisadas encontramos 6 associações preditas que estão presentes na rede_DATASUS e relatos na literatura. Acreditamos que as associações entre genes podem elucidar as causas de algumas comorbidades
id USP_11561bf0bac1c763e1811cff71b51393
oai_identifier_str oai:teses.usp.br:tde-30062019-204038
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexasAn approach of integrating public data on comorbidity for the prediction of association of complex diseasesComorbidity predictionData integrationIntegração de dadosLink predictionPredição de comorbidadesPredição de linksComorbidade é a coocorrência de dois ou mais distúrbios em uma pessoa. Identificar quais fatores genéticos ou quais são os mecanismos subjacentes à comorbidade é um grande desafio da ciência. Outra constatação relevante é que muitos pares de doenças que compartilham genes comuns não mostram comorbidade significativa nos registros clínicos. Vários estudos clínicos e epidemiológicos têm demonstrado que a comorbidade é uma situação médica universal porque pacientes com vários transtornos médicos são a regra e não a exceção. Neste trabalho, é proposta uma metodologia de predição de associação doença-doença por meio da integração de dados públicos sobre genes e sobre doenças e suas comorbidades. Analisando as redes formadas pelos genes e pelas doenças, a partir da utilização de cinco métodos de predição de links: Vizinhos Comuns, Adamic-Adar, Índice de Conexão Preferencial, Índice de Alocação de Recursos e Katz, a fim de encontrar novas relações de comorbidade. Como resultados foram criadas duas redes: uma rede epidemiológica chamada de rede_DATASUS com 1.941 nós e 248.508 arestas e uma rede gênica, rede_KEGG, com 288 nós e 1.983 arestas. E a predição em cima da rede_KEGG, e dentre as associações de doenças preditas e analisadas encontramos 6 associações preditas que estão presentes na rede_DATASUS e relatos na literatura. Acreditamos que as associações entre genes podem elucidar as causas de algumas comorbidadesComorbidity is the co-occurrence of two or more heath disturbances in a person. Identify which genetic factors or what are the biological mechanisms underlying the comorbidity is a big challenge in science. Another relevant finding is that many pairs of diseases that share common genes do not show significant comorbidity clinical records. Several clinical and epidemiological studies have shown that comorbidity is a universal medical situation because patients with various medical disorders are the rule and not the exception In this work, a methodology of prediction of disease-illness is provided through the integration of data on genes and on diseases and their comorbidities. Analyzing how to redesign genes and diseases, using five link prediction methods: Common Neighbours, Adamic-Adar, Preferential Attachment Index, Resource Allocation Index and emph Katz, an end to find new relationships of comorbidity. As a redesigned network: an epidemiological network called network_DATASUS network with 1,941 nodes and 248,508 edges and a genetic network, network_KEGG, with 288 nodes and 1,983 edges. And the prediction over network_KEGG, and among the predicted and analyzed combinations are 6 predicted classes that are present in network_DATASUS and reports in the literature. We believe that the associations between genes can elucidate the causes of some comorbiditiesBiblioteca Digitais de Teses e Dissertações da USPRuiz, Evandro Eduardo SeronSilva, Carla Fernandes da2019-05-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59143/tde-30062019-204038/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-08-22T21:19:49Zoai:teses.usp.br:tde-30062019-204038Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-08-22T21:19:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
An approach of integrating public data on comorbidity for the prediction of association of complex diseases
title Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
spellingShingle Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
Silva, Carla Fernandes da
Comorbidity prediction
Data integration
Integração de dados
Link prediction
Predição de comorbidades
Predição de links
title_short Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
title_full Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
title_fullStr Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
title_full_unstemmed Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
title_sort Uma abordagem de integração de dados públicos sobre comorbidade para a predição de associação de doenças complexas
author Silva, Carla Fernandes da
author_facet Silva, Carla Fernandes da
author_role author
dc.contributor.none.fl_str_mv Ruiz, Evandro Eduardo Seron
dc.contributor.author.fl_str_mv Silva, Carla Fernandes da
dc.subject.por.fl_str_mv Comorbidity prediction
Data integration
Integração de dados
Link prediction
Predição de comorbidades
Predição de links
topic Comorbidity prediction
Data integration
Integração de dados
Link prediction
Predição de comorbidades
Predição de links
description Comorbidade é a coocorrência de dois ou mais distúrbios em uma pessoa. Identificar quais fatores genéticos ou quais são os mecanismos subjacentes à comorbidade é um grande desafio da ciência. Outra constatação relevante é que muitos pares de doenças que compartilham genes comuns não mostram comorbidade significativa nos registros clínicos. Vários estudos clínicos e epidemiológicos têm demonstrado que a comorbidade é uma situação médica universal porque pacientes com vários transtornos médicos são a regra e não a exceção. Neste trabalho, é proposta uma metodologia de predição de associação doença-doença por meio da integração de dados públicos sobre genes e sobre doenças e suas comorbidades. Analisando as redes formadas pelos genes e pelas doenças, a partir da utilização de cinco métodos de predição de links: Vizinhos Comuns, Adamic-Adar, Índice de Conexão Preferencial, Índice de Alocação de Recursos e Katz, a fim de encontrar novas relações de comorbidade. Como resultados foram criadas duas redes: uma rede epidemiológica chamada de rede_DATASUS com 1.941 nós e 248.508 arestas e uma rede gênica, rede_KEGG, com 288 nós e 1.983 arestas. E a predição em cima da rede_KEGG, e dentre as associações de doenças preditas e analisadas encontramos 6 associações preditas que estão presentes na rede_DATASUS e relatos na literatura. Acreditamos que as associações entre genes podem elucidar as causas de algumas comorbidades
publishDate 2019
dc.date.none.fl_str_mv 2019-05-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59143/tde-30062019-204038/
url http://www.teses.usp.br/teses/disponiveis/59/59143/tde-30062019-204038/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257502729633792