Problemas de valores de contorno envolvendo o operador biharmônico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-083331/ |
Resumo: | Estudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividade |
id |
USP_12d1378b2c0f056ec7a725437e20882d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20032013-083331 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Problemas de valores de contorno envolvendo o operador biharmônicoBoundary value problems involving the biharmonic operatorBiharmonic operatorCondições de contorno de DirichletDirichletFunção de greenGreen's functionNavier and Steklov boundary conditionsNavier e SteklovOperador biharmônicoPositivity preservationPreservação de positividadeProblemas semilinearesSemilinear problemsEstudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividadeWe study the boundary value problem {\'DELTA POT. 2\' u = f in \'OMEGA\', \'BETA\' u = 0 in \'PARTIAL OMEGA\', in a bounded open \'OMEGA\'\'THIS CONTAINED\' \'R POT. N\' , under different boundary conditions. The questions of existence and positivity of solutions for this problem are addressed with Dirichlet, Navier and Steklov boundary conditions. We deduce natural boundary conditions through the study of a model for a plate with static load. We also study properties of the first eigenvalue of \'DELTA POT. 2\' and the semi-linear problem { \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) in \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 in \'PARTIUAL\' \'OMEGA\', for non-linearities like F(t) = \'l t l POT. p-1\', p \' DIFFERENT\' t, p > 0. For such problem we study existence and non-existence of solutions and its positivityBiblioteca Digitais de Teses e Dissertações da USPSantos, Ederson Moreira dosFerreira Junior, Vanderley Alves2013-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-083331/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:35Zoai:teses.usp.br:tde-20032013-083331Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Problemas de valores de contorno envolvendo o operador biharmônico Boundary value problems involving the biharmonic operator |
title |
Problemas de valores de contorno envolvendo o operador biharmônico |
spellingShingle |
Problemas de valores de contorno envolvendo o operador biharmônico Ferreira Junior, Vanderley Alves Biharmonic operator Condições de contorno de Dirichlet Dirichlet Função de green Green's function Navier and Steklov boundary conditions Navier e Steklov Operador biharmônico Positivity preservation Preservação de positividade Problemas semilineares Semilinear problems |
title_short |
Problemas de valores de contorno envolvendo o operador biharmônico |
title_full |
Problemas de valores de contorno envolvendo o operador biharmônico |
title_fullStr |
Problemas de valores de contorno envolvendo o operador biharmônico |
title_full_unstemmed |
Problemas de valores de contorno envolvendo o operador biharmônico |
title_sort |
Problemas de valores de contorno envolvendo o operador biharmônico |
author |
Ferreira Junior, Vanderley Alves |
author_facet |
Ferreira Junior, Vanderley Alves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Ederson Moreira dos |
dc.contributor.author.fl_str_mv |
Ferreira Junior, Vanderley Alves |
dc.subject.por.fl_str_mv |
Biharmonic operator Condições de contorno de Dirichlet Dirichlet Função de green Green's function Navier and Steklov boundary conditions Navier e Steklov Operador biharmônico Positivity preservation Preservação de positividade Problemas semilineares Semilinear problems |
topic |
Biharmonic operator Condições de contorno de Dirichlet Dirichlet Função de green Green's function Navier and Steklov boundary conditions Navier e Steklov Operador biharmônico Positivity preservation Preservação de positividade Problemas semilineares Semilinear problems |
description |
Estudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividade |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-083331/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-083331/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257148907585536 |