Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model

Detalhes bibliográficos
Autor(a) principal: Sousa, Humberto Costa de
Data de Publicação: 2000
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28022018-103002/
Resumo: Tarefas envolvendo Reconhecimento de Padrões vêm se tornando mais freqüentes em diferentes domínios de aplicação. A maioria destas tarefas tem sido eficientemente tratada através da utilização de Redes Neurais Artificiais. Entre os modelos de Redes Neurais mais difundidos, destaca-se o modelo Perceptron Multi-Camadas (Multi-Layer Perceptron ou MLP). Entretanto, o desempenho de uma Rede Neural MLP em um determinado problema depende diretamente da topologia adotada, que deve ser determinada no inicio do processo de treinamento. A escolha da topologia de uma Rede Neural não é trivial, normalmente resultando em uma busca exaustiva pela configuração mais apropriada. Com o objetivo de auxiliar a determinação da topologia de uma Rede Neural, vários métodos foram desenvolvidos para a automação deste processo, entre os quais encontram-se as Redes Neurais Construtivas. Estas redes utilizam Algoritmos Construtivos que, a partir de uma rede mínima, inserem gradualmente novos neurônios e conexões durante o treinamento, procurando melhorar o desempenho da mesma. Contudo, a avaliação da melhor aplicação de diferentes Algoritmos Construtivos em um mesmo problema depende da homogeneidade do seu ambiente de treinamento. Este trabalho fornece a definição de um conjunto de classes abstratas para permitir que diferentes algoritmos de treinamento, incluindo Algoritmos Construtivos, sejam criados como componentes com acesso estritamente definido para futura utilização em diferentes aplicações. Através do uso destes componentes em uma nova versão do Simulador para Redes Neurais Artificiais Kipu, a análise da eficiência de Redes Neurais Construtivas em tarefas reais de Reconhecimento de Padrões teve início.
id USP_155cdd5a21c64f5b53d37f5c275dc5b4
oai_identifier_str oai:teses.usp.br:tde-28022018-103002
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object ModelNot availableNão disponívelNot availableTarefas envolvendo Reconhecimento de Padrões vêm se tornando mais freqüentes em diferentes domínios de aplicação. A maioria destas tarefas tem sido eficientemente tratada através da utilização de Redes Neurais Artificiais. Entre os modelos de Redes Neurais mais difundidos, destaca-se o modelo Perceptron Multi-Camadas (Multi-Layer Perceptron ou MLP). Entretanto, o desempenho de uma Rede Neural MLP em um determinado problema depende diretamente da topologia adotada, que deve ser determinada no inicio do processo de treinamento. A escolha da topologia de uma Rede Neural não é trivial, normalmente resultando em uma busca exaustiva pela configuração mais apropriada. Com o objetivo de auxiliar a determinação da topologia de uma Rede Neural, vários métodos foram desenvolvidos para a automação deste processo, entre os quais encontram-se as Redes Neurais Construtivas. Estas redes utilizam Algoritmos Construtivos que, a partir de uma rede mínima, inserem gradualmente novos neurônios e conexões durante o treinamento, procurando melhorar o desempenho da mesma. Contudo, a avaliação da melhor aplicação de diferentes Algoritmos Construtivos em um mesmo problema depende da homogeneidade do seu ambiente de treinamento. Este trabalho fornece a definição de um conjunto de classes abstratas para permitir que diferentes algoritmos de treinamento, incluindo Algoritmos Construtivos, sejam criados como componentes com acesso estritamente definido para futura utilização em diferentes aplicações. Através do uso destes componentes em uma nova versão do Simulador para Redes Neurais Artificiais Kipu, a análise da eficiência de Redes Neurais Construtivas em tarefas reais de Reconhecimento de Padrões teve início.Tasks involving Pattern Recognition are becoming more frequent in many applications. Most of these tasks have been efficiently handled by Artificial Neural Networks. One of the most common models used is the MLP (Multi-Layer Perceptron), though its performance is directly dependent on the chosen topology, which it must be set in the beginning of the training process. The choice of a Neural Network topology is not trivial, and usually becomes an exhaustive search for the most appropriate configuration. Several methods have been developed to automatically find a suitable Neural Network topology, including Constructive Neural Networks. These networks are trained by Constructive Algorithms which, starting from a minimal topology, gradually insert new neurons and connections, aming to improve the network\'s performance. Nevertheless, the evaluation of the best use of such algorithms in a given task depends on the homogeneity of the training environment. This work provides the definition of a set of abstract classes which allow different training algorithms, including Constructive Algorithms, to be built as components with strictly defined access in order to be used in different applications. By using these components in a new version of the Kipu Neural Network Simulator, it is possible to begin analyzing the efficiency of Constructive Neural Networks in real Pattern Recognition tasks.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deSousa, Humberto Costa de2000-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-28022018-103002/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-28022018-103002Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
Not available
title Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
spellingShingle Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
Sousa, Humberto Costa de
Não disponível
Not available
title_short Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
title_full Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
title_fullStr Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
title_full_unstemmed Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
title_sort Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model
author Sousa, Humberto Costa de
author_facet Sousa, Humberto Costa de
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Sousa, Humberto Costa de
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Tarefas envolvendo Reconhecimento de Padrões vêm se tornando mais freqüentes em diferentes domínios de aplicação. A maioria destas tarefas tem sido eficientemente tratada através da utilização de Redes Neurais Artificiais. Entre os modelos de Redes Neurais mais difundidos, destaca-se o modelo Perceptron Multi-Camadas (Multi-Layer Perceptron ou MLP). Entretanto, o desempenho de uma Rede Neural MLP em um determinado problema depende diretamente da topologia adotada, que deve ser determinada no inicio do processo de treinamento. A escolha da topologia de uma Rede Neural não é trivial, normalmente resultando em uma busca exaustiva pela configuração mais apropriada. Com o objetivo de auxiliar a determinação da topologia de uma Rede Neural, vários métodos foram desenvolvidos para a automação deste processo, entre os quais encontram-se as Redes Neurais Construtivas. Estas redes utilizam Algoritmos Construtivos que, a partir de uma rede mínima, inserem gradualmente novos neurônios e conexões durante o treinamento, procurando melhorar o desempenho da mesma. Contudo, a avaliação da melhor aplicação de diferentes Algoritmos Construtivos em um mesmo problema depende da homogeneidade do seu ambiente de treinamento. Este trabalho fornece a definição de um conjunto de classes abstratas para permitir que diferentes algoritmos de treinamento, incluindo Algoritmos Construtivos, sejam criados como componentes com acesso estritamente definido para futura utilização em diferentes aplicações. Através do uso destes componentes em uma nova versão do Simulador para Redes Neurais Artificiais Kipu, a análise da eficiência de Redes Neurais Construtivas em tarefas reais de Reconhecimento de Padrões teve início.
publishDate 2000
dc.date.none.fl_str_mv 2000-12-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28022018-103002/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28022018-103002/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257426072436736