Qualitative global sensitivity analysis for probabilistic circuits

Detalhes bibliográficos
Autor(a) principal: Llerena, Julissa Giuliana Villanueva
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/
Resumo: A Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution through an structure of weighted sums, products and univariate or multivariate distributions. Subject to some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These models have shown competitive performance in several machine learning tasks. Despite the relative success of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues. (i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident inferences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way, which introduces bias into the prediction if not handled properly. To address these issues, we developed two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qualitative global sensitivity analysis on the model parameters, measuring the variability of the predictions to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging tasks such as image completion, multi-label classification, and multi-class classification.
id USP_1596739b59b057af70bce67f0bb35d06
oai_identifier_str oai:teses.usp.br:tde-25092023-112802
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Qualitative global sensitivity analysis for probabilistic circuitsAnálise de sensibilidade global e qualitativa para circuitos probabilísticosAnálise de sensibilidadeCircuitos probabilisticosCircuitos probabilisticos credaisCredal probabilistic circuitsDados faltantes não ignoráveisNon-ignorable missing dataProbabilistic circuitsSensitivity analysisA Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution through an structure of weighted sums, products and univariate or multivariate distributions. Subject to some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These models have shown competitive performance in several machine learning tasks. Despite the relative success of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues. (i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident inferences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way, which introduces bias into the prediction if not handled properly. To address these issues, we developed two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qualitative global sensitivity analysis on the model parameters, measuring the variability of the predictions to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging tasks such as image completion, multi-label classification, and multi-class classification.Um Circuito Probabilístico (CP) é um modelo generativo expressivo que codifica uma distribuição de probabilidade através de uma estrutura de somas ponderadas, produtos e distribuições univariadas ou multivariadas. Sujeitos a algumas restrições, os CPs são tratáveis para varias classes de consultas. Os exemplos mais populares de CPs são Redes de Soma-Produto, Diagramas de Decisão Sentenciais Probabilísticos e Florestas Aleatórias Gerativas. Esses modelos têm mostrado desempenho competitivo em diversas tarefas de aprendizado de máquina. Apesar do relativo sucesso dos CPs, vários problemas podem afetar a qualidade de suas previsões. Neste trabalho, nos concentramos em duas questões relevantes. (i) CPs com um alto número de parâmetros e dados escassos podem produzir inferências não confiáveis e com excesso de confiança. (ii) Abordagens típicas tratam dados faltantes por marginalização ou heuristicamente, assumindo que o processo de falta é ignorável ou não informativo; no entanto, os dados geralmente estão ausentes de maneira não ignorável, o que introduz viés na previsão se não for tratado adequadamente. Para resolver essas questões, desenvolvemos dois algoritmos baseados em Circuitos Probabilísticos Credais, que são conjuntos de CPs obtidos pela perturbação simultânea de todos os parâmetros do modelo (com a estrutura do modelo fixa). Nosso primeiro algoritmo realiza uma análise de sensibilidade global qualitativa nos parâmetros do modelo, medindo a variabilidade das previsões para perturbações dos pesos do modelo. Para mitigar o segundo problema, propomos um procedimento para realizar inferência preditiva tratável sob dados ausentes não ignoráveis. Avaliamos nossos algoritmos em tarefas desafiadoras, como compleção de imagem, classificação multirótulo e classificação multiclasse.Biblioteca Digitais de Teses e Dissertações da USPMauá, Denis DerataniLlerena, Julissa Giuliana Villanueva2023-07-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-28T20:57:07Zoai:teses.usp.br:tde-25092023-112802Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-28T20:57:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Qualitative global sensitivity analysis for probabilistic circuits
Análise de sensibilidade global e qualitativa para circuitos probabilísticos
title Qualitative global sensitivity analysis for probabilistic circuits
spellingShingle Qualitative global sensitivity analysis for probabilistic circuits
Llerena, Julissa Giuliana Villanueva
Análise de sensibilidade
Circuitos probabilisticos
Circuitos probabilisticos credais
Credal probabilistic circuits
Dados faltantes não ignoráveis
Non-ignorable missing data
Probabilistic circuits
Sensitivity analysis
title_short Qualitative global sensitivity analysis for probabilistic circuits
title_full Qualitative global sensitivity analysis for probabilistic circuits
title_fullStr Qualitative global sensitivity analysis for probabilistic circuits
title_full_unstemmed Qualitative global sensitivity analysis for probabilistic circuits
title_sort Qualitative global sensitivity analysis for probabilistic circuits
author Llerena, Julissa Giuliana Villanueva
author_facet Llerena, Julissa Giuliana Villanueva
author_role author
dc.contributor.none.fl_str_mv Mauá, Denis Deratani
dc.contributor.author.fl_str_mv Llerena, Julissa Giuliana Villanueva
dc.subject.por.fl_str_mv Análise de sensibilidade
Circuitos probabilisticos
Circuitos probabilisticos credais
Credal probabilistic circuits
Dados faltantes não ignoráveis
Non-ignorable missing data
Probabilistic circuits
Sensitivity analysis
topic Análise de sensibilidade
Circuitos probabilisticos
Circuitos probabilisticos credais
Credal probabilistic circuits
Dados faltantes não ignoráveis
Non-ignorable missing data
Probabilistic circuits
Sensitivity analysis
description A Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution through an structure of weighted sums, products and univariate or multivariate distributions. Subject to some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These models have shown competitive performance in several machine learning tasks. Despite the relative success of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues. (i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident inferences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way, which introduces bias into the prediction if not handled properly. To address these issues, we developed two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qualitative global sensitivity analysis on the model parameters, measuring the variability of the predictions to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging tasks such as image completion, multi-label classification, and multi-class classification.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257342315331584