Qualitative global sensitivity analysis for probabilistic circuits
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/ |
Resumo: | A Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution through an structure of weighted sums, products and univariate or multivariate distributions. Subject to some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These models have shown competitive performance in several machine learning tasks. Despite the relative success of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues. (i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident inferences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way, which introduces bias into the prediction if not handled properly. To address these issues, we developed two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qualitative global sensitivity analysis on the model parameters, measuring the variability of the predictions to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging tasks such as image completion, multi-label classification, and multi-class classification. |
id |
USP_1596739b59b057af70bce67f0bb35d06 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25092023-112802 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Qualitative global sensitivity analysis for probabilistic circuitsAnálise de sensibilidade global e qualitativa para circuitos probabilísticosAnálise de sensibilidadeCircuitos probabilisticosCircuitos probabilisticos credaisCredal probabilistic circuitsDados faltantes não ignoráveisNon-ignorable missing dataProbabilistic circuitsSensitivity analysisA Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution through an structure of weighted sums, products and univariate or multivariate distributions. Subject to some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These models have shown competitive performance in several machine learning tasks. Despite the relative success of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues. (i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident inferences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way, which introduces bias into the prediction if not handled properly. To address these issues, we developed two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qualitative global sensitivity analysis on the model parameters, measuring the variability of the predictions to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging tasks such as image completion, multi-label classification, and multi-class classification.Um Circuito Probabilístico (CP) é um modelo generativo expressivo que codifica uma distribuição de probabilidade através de uma estrutura de somas ponderadas, produtos e distribuições univariadas ou multivariadas. Sujeitos a algumas restrições, os CPs são tratáveis para varias classes de consultas. Os exemplos mais populares de CPs são Redes de Soma-Produto, Diagramas de Decisão Sentenciais Probabilísticos e Florestas Aleatórias Gerativas. Esses modelos têm mostrado desempenho competitivo em diversas tarefas de aprendizado de máquina. Apesar do relativo sucesso dos CPs, vários problemas podem afetar a qualidade de suas previsões. Neste trabalho, nos concentramos em duas questões relevantes. (i) CPs com um alto número de parâmetros e dados escassos podem produzir inferências não confiáveis e com excesso de confiança. (ii) Abordagens típicas tratam dados faltantes por marginalização ou heuristicamente, assumindo que o processo de falta é ignorável ou não informativo; no entanto, os dados geralmente estão ausentes de maneira não ignorável, o que introduz viés na previsão se não for tratado adequadamente. Para resolver essas questões, desenvolvemos dois algoritmos baseados em Circuitos Probabilísticos Credais, que são conjuntos de CPs obtidos pela perturbação simultânea de todos os parâmetros do modelo (com a estrutura do modelo fixa). Nosso primeiro algoritmo realiza uma análise de sensibilidade global qualitativa nos parâmetros do modelo, medindo a variabilidade das previsões para perturbações dos pesos do modelo. Para mitigar o segundo problema, propomos um procedimento para realizar inferência preditiva tratável sob dados ausentes não ignoráveis. Avaliamos nossos algoritmos em tarefas desafiadoras, como compleção de imagem, classificação multirótulo e classificação multiclasse.Biblioteca Digitais de Teses e Dissertações da USPMauá, Denis DerataniLlerena, Julissa Giuliana Villanueva2023-07-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-28T20:57:07Zoai:teses.usp.br:tde-25092023-112802Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-28T20:57:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Qualitative global sensitivity analysis for probabilistic circuits Análise de sensibilidade global e qualitativa para circuitos probabilísticos |
title |
Qualitative global sensitivity analysis for probabilistic circuits |
spellingShingle |
Qualitative global sensitivity analysis for probabilistic circuits Llerena, Julissa Giuliana Villanueva Análise de sensibilidade Circuitos probabilisticos Circuitos probabilisticos credais Credal probabilistic circuits Dados faltantes não ignoráveis Non-ignorable missing data Probabilistic circuits Sensitivity analysis |
title_short |
Qualitative global sensitivity analysis for probabilistic circuits |
title_full |
Qualitative global sensitivity analysis for probabilistic circuits |
title_fullStr |
Qualitative global sensitivity analysis for probabilistic circuits |
title_full_unstemmed |
Qualitative global sensitivity analysis for probabilistic circuits |
title_sort |
Qualitative global sensitivity analysis for probabilistic circuits |
author |
Llerena, Julissa Giuliana Villanueva |
author_facet |
Llerena, Julissa Giuliana Villanueva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mauá, Denis Deratani |
dc.contributor.author.fl_str_mv |
Llerena, Julissa Giuliana Villanueva |
dc.subject.por.fl_str_mv |
Análise de sensibilidade Circuitos probabilisticos Circuitos probabilisticos credais Credal probabilistic circuits Dados faltantes não ignoráveis Non-ignorable missing data Probabilistic circuits Sensitivity analysis |
topic |
Análise de sensibilidade Circuitos probabilisticos Circuitos probabilisticos credais Credal probabilistic circuits Dados faltantes não ignoráveis Non-ignorable missing data Probabilistic circuits Sensitivity analysis |
description |
A Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution through an structure of weighted sums, products and univariate or multivariate distributions. Subject to some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These models have shown competitive performance in several machine learning tasks. Despite the relative success of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues. (i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident inferences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way, which introduces bias into the prediction if not handled properly. To address these issues, we developed two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qualitative global sensitivity analysis on the model parameters, measuring the variability of the predictions to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging tasks such as image completion, multi-label classification, and multi-class classification. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092023-112802/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257342315331584 |