Predição do movimento de ações da Petrobras a partir de notícias
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55137/tde-06092022-100818/ |
Resumo: | Com a crescente entrada de novos investidores no mercado acionário brasileiro vê-se uma crescente circulação de conteúdos referentes a empresas, oportunidades de investimentos, avaliações e fatos relevantes sobre investimentos do mercado financeiro brasileiro. Esse movimento, somado a possibilidade de veiculação de conteúdos na internet torna difícil para os investidores assimilar novos conteúdos que são veiculados diariamente visando a melhor tomada de decisão na alocação de recursos para seus investimentos. Uma saída para abranger mais conteúdos referentes a alguma possibilidade de investimento e selecionar somente o conteúdo mais relevante é a utilização de algoritmos que possam extrair de um elevado conjunto de informações as mais relevantes para o interesse do investidor. O uso de tecnologias de aprendizado de máquina vem sendo usado em diversas áreas do conhecimento, dentre elas a classificação ou previsão do movimento do mercado financeiro utilizando notícias. No entanto, até agora poucos trabalhos utilizam modelos de linguagem natural baseados em redes neurais, como text embedding. Neste trabalho, é proposto a utilização do modelo BERT (Bidirectional Encoder Representations from Transformers) em comparação com o modelo BoW (Bag of Words) com o classificador Naive Bayes SVM, mais comumente utilizado para a finalidade de prever o movimento de uma ação do mercado financeiro através de notícias. Será utilizado notícias de jornais brasileiros separando somente as notícias referentes a empresa Petrobras |
id |
USP_192bf01a248ad7eea59627c44f227697 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06092022-100818 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Predição do movimento de ações da Petrobras a partir de notíciasPetrobras share movement prediction based on newsClassificaçãoClassificationMineração de TextosNewsNotíciasPetrobrasPetrobrasText MiningCom a crescente entrada de novos investidores no mercado acionário brasileiro vê-se uma crescente circulação de conteúdos referentes a empresas, oportunidades de investimentos, avaliações e fatos relevantes sobre investimentos do mercado financeiro brasileiro. Esse movimento, somado a possibilidade de veiculação de conteúdos na internet torna difícil para os investidores assimilar novos conteúdos que são veiculados diariamente visando a melhor tomada de decisão na alocação de recursos para seus investimentos. Uma saída para abranger mais conteúdos referentes a alguma possibilidade de investimento e selecionar somente o conteúdo mais relevante é a utilização de algoritmos que possam extrair de um elevado conjunto de informações as mais relevantes para o interesse do investidor. O uso de tecnologias de aprendizado de máquina vem sendo usado em diversas áreas do conhecimento, dentre elas a classificação ou previsão do movimento do mercado financeiro utilizando notícias. No entanto, até agora poucos trabalhos utilizam modelos de linguagem natural baseados em redes neurais, como text embedding. Neste trabalho, é proposto a utilização do modelo BERT (Bidirectional Encoder Representations from Transformers) em comparação com o modelo BoW (Bag of Words) com o classificador Naive Bayes SVM, mais comumente utilizado para a finalidade de prever o movimento de uma ação do mercado financeiro através de notícias. Será utilizado notícias de jornais brasileiros separando somente as notícias referentes a empresa PetrobrasWith the increasing entry of new investors in the Brazilian stock market, there is a growing circulation of content referring to companies, investment opportunities, evaluations and relevant facts about investments in the Brazilian financial market, this movement, added to the possibility of broadcasting content on the internet makes it difficult for investors to assimilate new content that is broadcast daily, aiming at better decision-making in the allocation of resources for their investments. A way out to cover more content referring to some investment possibility and select only the most relevant content is the use of algorithms that can extract from a high set of information the most relevant to the investors interest. The use of machine learning technologies has been used in several areas of knowledge, among them the classification or prediction of the movement of the financial market using news. However, so far few works use natural language models based on neural networks, such as text embedding. In this work, we propose the use of the BERT model (Bidirectional Encoder Representations from Transformers) in comparison with the BoW model (Bag of Words) with the most commonly used Naive Bayes SVM classifier. for the purpose of predicting the movement of a stock in the financial market through news. News from Brazilian newspapers will be used, separating only the news referring to the company PetrobrasBiblioteca Digitais de Teses e Dissertações da USPRezende, Solange OliveiraBarbosa, Bruno Aparecido2022-06-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55137/tde-06092022-100818/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-09-06T13:11:08Zoai:teses.usp.br:tde-06092022-100818Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-09-06T13:11:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Predição do movimento de ações da Petrobras a partir de notícias Petrobras share movement prediction based on news |
title |
Predição do movimento de ações da Petrobras a partir de notícias |
spellingShingle |
Predição do movimento de ações da Petrobras a partir de notícias Barbosa, Bruno Aparecido Classificação Classification Mineração de Textos News Notícias Petrobras Petrobras Text Mining |
title_short |
Predição do movimento de ações da Petrobras a partir de notícias |
title_full |
Predição do movimento de ações da Petrobras a partir de notícias |
title_fullStr |
Predição do movimento de ações da Petrobras a partir de notícias |
title_full_unstemmed |
Predição do movimento de ações da Petrobras a partir de notícias |
title_sort |
Predição do movimento de ações da Petrobras a partir de notícias |
author |
Barbosa, Bruno Aparecido |
author_facet |
Barbosa, Bruno Aparecido |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rezende, Solange Oliveira |
dc.contributor.author.fl_str_mv |
Barbosa, Bruno Aparecido |
dc.subject.por.fl_str_mv |
Classificação Classification Mineração de Textos News Notícias Petrobras Petrobras Text Mining |
topic |
Classificação Classification Mineração de Textos News Notícias Petrobras Petrobras Text Mining |
description |
Com a crescente entrada de novos investidores no mercado acionário brasileiro vê-se uma crescente circulação de conteúdos referentes a empresas, oportunidades de investimentos, avaliações e fatos relevantes sobre investimentos do mercado financeiro brasileiro. Esse movimento, somado a possibilidade de veiculação de conteúdos na internet torna difícil para os investidores assimilar novos conteúdos que são veiculados diariamente visando a melhor tomada de decisão na alocação de recursos para seus investimentos. Uma saída para abranger mais conteúdos referentes a alguma possibilidade de investimento e selecionar somente o conteúdo mais relevante é a utilização de algoritmos que possam extrair de um elevado conjunto de informações as mais relevantes para o interesse do investidor. O uso de tecnologias de aprendizado de máquina vem sendo usado em diversas áreas do conhecimento, dentre elas a classificação ou previsão do movimento do mercado financeiro utilizando notícias. No entanto, até agora poucos trabalhos utilizam modelos de linguagem natural baseados em redes neurais, como text embedding. Neste trabalho, é proposto a utilização do modelo BERT (Bidirectional Encoder Representations from Transformers) em comparação com o modelo BoW (Bag of Words) com o classificador Naive Bayes SVM, mais comumente utilizado para a finalidade de prever o movimento de uma ação do mercado financeiro através de notícias. Será utilizado notícias de jornais brasileiros separando somente as notícias referentes a empresa Petrobras |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-06092022-100818/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-06092022-100818/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256725770469376 |