Estudo de equações do tipo Navier-Stokes com retardo

Detalhes bibliográficos
Autor(a) principal: Guzzo, Sandro Marcos
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/
Resumo: Neste trabalho estudamos a existência de soluções de equações do tipo Navier-Stokes com retardo na força externa e no termo n~ao linear. Usando a teoria de semigrupos estudamos a existência de soluções para um problema da forma \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), em \'OMEGA\' x (0, T), div u(t) = 0 em \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x PERTENCE a \' OMEGA\', u(t, x) = 0 t > 0, X \'PERTENCE A\' \' PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'PERTENCE A\' (- \'INFINITO\', 0) x \'PERTENCE A\' \'OMEGA\', onde F9t, \'uIND.t) = INT.IND.t SUP. -\' INFINITO\' \' ALFA1(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITO \'BETA\' (s-t)u(s)ds. Similarmente, usando a tecnica de aproximac~oes de Galerkin, estudamos o problema anterior com F(.) e g(.) dadas por f(t; \'u INDS.t\') = u(t-r(t)); e g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), para alguma função G apropriada. Neste caso, também estudamos a estabilidade de soluções estacionarias
id USP_1a47f8030af1b2b13e18ff401fbd7943
oai_identifier_str oai:teses.usp.br:tde-01092009-105829
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudo de equações do tipo Navier-Stokes com retardoNvier-Stokes equations with delayDelayEquações de Navier-StokesNavier-Stokes equationsRetardoNeste trabalho estudamos a existência de soluções de equações do tipo Navier-Stokes com retardo na força externa e no termo n~ao linear. Usando a teoria de semigrupos estudamos a existência de soluções para um problema da forma \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), em \'OMEGA\' x (0, T), div u(t) = 0 em \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x PERTENCE a \' OMEGA\', u(t, x) = 0 t > 0, X \'PERTENCE A\' \' PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'PERTENCE A\' (- \'INFINITO\', 0) x \'PERTENCE A\' \'OMEGA\', onde F9t, \'uIND.t) = INT.IND.t SUP. -\' INFINITO\' \' ALFA1(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITO \'BETA\' (s-t)u(s)ds. Similarmente, usando a tecnica de aproximac~oes de Galerkin, estudamos o problema anterior com F(.) e g(.) dadas por f(t; \'u INDS.t\') = u(t-r(t)); e g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), para alguma função G apropriada. Neste caso, também estudamos a estabilidade de soluções estacionariasIn this work we stuy the existence of solutions for a Navier-Stokes typt equations with delay in the external force and in the nonlinear term. Using the semi-group theory we study the existence of solution for a problem in the form \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), ijn \'OMEGA\' x (0, T), div u(t) = 0 in \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x \'IT BELONGS \' OMEGA\', u(t, x) = 0 t > 0, X \'IT BELONGS\' \'PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'IT BELONGS\' (- \'INFINITY\', 0) x \'IT BELONGS\' \'OMEGA\', where F(t, \'u .t) = INT.IND.t SUP. -\' INFINITY\' \' ALFA(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITY \'BETA\' (s-t)u(s)ds. On another hand using the Galerkin appreoximations method we study the same with F(.) e g(.) given by f(t; \'u INDS.t\') = u(t-r(t)); and g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), for some G appropriated. In thiis case, we study also the stability of stanionary solutionsBiblioteca Digitais de Teses e Dissertações da USPMorales, Eduardo Alex HernandezPlanas, Gabriela Del ValleGuzzo, Sandro Marcos2009-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-01092009-105829Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo de equações do tipo Navier-Stokes com retardo
Nvier-Stokes equations with delay
title Estudo de equações do tipo Navier-Stokes com retardo
spellingShingle Estudo de equações do tipo Navier-Stokes com retardo
Guzzo, Sandro Marcos
Delay
Equações de Navier-Stokes
Navier-Stokes equations
Retardo
title_short Estudo de equações do tipo Navier-Stokes com retardo
title_full Estudo de equações do tipo Navier-Stokes com retardo
title_fullStr Estudo de equações do tipo Navier-Stokes com retardo
title_full_unstemmed Estudo de equações do tipo Navier-Stokes com retardo
title_sort Estudo de equações do tipo Navier-Stokes com retardo
author Guzzo, Sandro Marcos
author_facet Guzzo, Sandro Marcos
author_role author
dc.contributor.none.fl_str_mv Morales, Eduardo Alex Hernandez
Planas, Gabriela Del Valle
dc.contributor.author.fl_str_mv Guzzo, Sandro Marcos
dc.subject.por.fl_str_mv Delay
Equações de Navier-Stokes
Navier-Stokes equations
Retardo
topic Delay
Equações de Navier-Stokes
Navier-Stokes equations
Retardo
description Neste trabalho estudamos a existência de soluções de equações do tipo Navier-Stokes com retardo na força externa e no termo n~ao linear. Usando a teoria de semigrupos estudamos a existência de soluções para um problema da forma \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), em \'OMEGA\' x (0, T), div u(t) = 0 em \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x PERTENCE a \' OMEGA\', u(t, x) = 0 t > 0, X \'PERTENCE A\' \' PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'PERTENCE A\' (- \'INFINITO\', 0) x \'PERTENCE A\' \'OMEGA\', onde F9t, \'uIND.t) = INT.IND.t SUP. -\' INFINITO\' \' ALFA1(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITO \'BETA\' (s-t)u(s)ds. Similarmente, usando a tecnica de aproximac~oes de Galerkin, estudamos o problema anterior com F(.) e g(.) dadas por f(t; \'u INDS.t\') = u(t-r(t)); e g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), para alguma função G apropriada. Neste caso, também estudamos a estabilidade de soluções estacionarias
publishDate 2009
dc.date.none.fl_str_mv 2009-06-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256584826126336