Estudo de equações do tipo Navier-Stokes com retardo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/ |
Resumo: | Neste trabalho estudamos a existência de soluções de equações do tipo Navier-Stokes com retardo na força externa e no termo n~ao linear. Usando a teoria de semigrupos estudamos a existência de soluções para um problema da forma \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), em \'OMEGA\' x (0, T), div u(t) = 0 em \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x PERTENCE a \' OMEGA\', u(t, x) = 0 t > 0, X \'PERTENCE A\' \' PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'PERTENCE A\' (- \'INFINITO\', 0) x \'PERTENCE A\' \'OMEGA\', onde F9t, \'uIND.t) = INT.IND.t SUP. -\' INFINITO\' \' ALFA1(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITO \'BETA\' (s-t)u(s)ds. Similarmente, usando a tecnica de aproximac~oes de Galerkin, estudamos o problema anterior com F(.) e g(.) dadas por f(t; \'u INDS.t\') = u(t-r(t)); e g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), para alguma função G apropriada. Neste caso, também estudamos a estabilidade de soluções estacionarias |
id |
USP_1a47f8030af1b2b13e18ff401fbd7943 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01092009-105829 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estudo de equações do tipo Navier-Stokes com retardoNvier-Stokes equations with delayDelayEquações de Navier-StokesNavier-Stokes equationsRetardoNeste trabalho estudamos a existência de soluções de equações do tipo Navier-Stokes com retardo na força externa e no termo n~ao linear. Usando a teoria de semigrupos estudamos a existência de soluções para um problema da forma \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), em \'OMEGA\' x (0, T), div u(t) = 0 em \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x PERTENCE a \' OMEGA\', u(t, x) = 0 t > 0, X \'PERTENCE A\' \' PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'PERTENCE A\' (- \'INFINITO\', 0) x \'PERTENCE A\' \'OMEGA\', onde F9t, \'uIND.t) = INT.IND.t SUP. -\' INFINITO\' \' ALFA1(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITO \'BETA\' (s-t)u(s)ds. Similarmente, usando a tecnica de aproximac~oes de Galerkin, estudamos o problema anterior com F(.) e g(.) dadas por f(t; \'u INDS.t\') = u(t-r(t)); e g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), para alguma função G apropriada. Neste caso, também estudamos a estabilidade de soluções estacionariasIn this work we stuy the existence of solutions for a Navier-Stokes typt equations with delay in the external force and in the nonlinear term. Using the semi-group theory we study the existence of solution for a problem in the form \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), ijn \'OMEGA\' x (0, T), div u(t) = 0 in \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x \'IT BELONGS \' OMEGA\', u(t, x) = 0 t > 0, X \'IT BELONGS\' \'PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'IT BELONGS\' (- \'INFINITY\', 0) x \'IT BELONGS\' \'OMEGA\', where F(t, \'u .t) = INT.IND.t SUP. -\' INFINITY\' \' ALFA(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITY \'BETA\' (s-t)u(s)ds. On another hand using the Galerkin appreoximations method we study the same with F(.) e g(.) given by f(t; \'u INDS.t\') = u(t-r(t)); and g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), for some G appropriated. In thiis case, we study also the stability of stanionary solutionsBiblioteca Digitais de Teses e Dissertações da USPMorales, Eduardo Alex HernandezPlanas, Gabriela Del ValleGuzzo, Sandro Marcos2009-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-01092009-105829Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estudo de equações do tipo Navier-Stokes com retardo Nvier-Stokes equations with delay |
title |
Estudo de equações do tipo Navier-Stokes com retardo |
spellingShingle |
Estudo de equações do tipo Navier-Stokes com retardo Guzzo, Sandro Marcos Delay Equações de Navier-Stokes Navier-Stokes equations Retardo |
title_short |
Estudo de equações do tipo Navier-Stokes com retardo |
title_full |
Estudo de equações do tipo Navier-Stokes com retardo |
title_fullStr |
Estudo de equações do tipo Navier-Stokes com retardo |
title_full_unstemmed |
Estudo de equações do tipo Navier-Stokes com retardo |
title_sort |
Estudo de equações do tipo Navier-Stokes com retardo |
author |
Guzzo, Sandro Marcos |
author_facet |
Guzzo, Sandro Marcos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Morales, Eduardo Alex Hernandez Planas, Gabriela Del Valle |
dc.contributor.author.fl_str_mv |
Guzzo, Sandro Marcos |
dc.subject.por.fl_str_mv |
Delay Equações de Navier-Stokes Navier-Stokes equations Retardo |
topic |
Delay Equações de Navier-Stokes Navier-Stokes equations Retardo |
description |
Neste trabalho estudamos a existência de soluções de equações do tipo Navier-Stokes com retardo na força externa e no termo n~ao linear. Usando a teoria de semigrupos estudamos a existência de soluções para um problema da forma \'d. SUP. dt u(t) - v\'delta\'u(t) + (F(t, \'u IND.t\'). abla)u(t) + abla p = g(t, \'u IND.t\'), em \'OMEGA\' x (0, T), div u(t) = 0 em \'OMEGA\' x (0, T), u(0, x) = \'u POT.0 (x) x PERTENCE a \' OMEGA\', u(t, x) = 0 t > 0, X \'PERTENCE A\' \' PARTIAL\' \'OMEGA\', u(t, x) =\\phi (t, x) t \'PERTENCE A\' (- \'INFINITO\', 0) x \'PERTENCE A\' \'OMEGA\', onde F9t, \'uIND.t) = INT.IND.t SUP. -\' INFINITO\' \' ALFA1(s-t)u(s)ds + u(t-r), g(t, \'u IND.t\') = INT. SUP. t IND. - INFINITO \'BETA\' (s-t)u(s)ds. Similarmente, usando a tecnica de aproximac~oes de Galerkin, estudamos o problema anterior com F(.) e g(.) dadas por f(t; \'u INDS.t\') = u(t-r(t)); e g(t; \'u IND.t\') = G(u(t-\'rô\' (t))), para alguma função G apropriada. Neste caso, também estudamos a estabilidade de soluções estacionarias |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092009-105829/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256584826126336 |