Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/ |
Resumo: | O objetivo deste trabalho é reconhecer gestos em tempo real apenas com o uso de câmeras, sem marcadores, roupas ou qualquer outro tipo de sensor. A montagem do ambiente de captura é simples, com apenas duas câmeras e um computador. O fundo deve ser estático, e contrastar com o usuário. A ausência de marcadores ou roupas especiais dificulta a tarefa de localizar os membros. A motivação desta tese é criar um ambiente de realidade virtual para treino de goleiros, que possibilite corrigir erros de movimentação, posicionamento e de escolha do método de defesa. A técnica desenvolvida pode ser aplicada para qualquer atividade que envolva gestos ou movimentos do corpo. O reconhecimento de gestos começa com a detecção da região da imagem onde se encontra o usuário. Nessa região, localizamos as regiões mais salientes como candidatas a extremidades do corpo, ou seja, mãos, pés e cabeça. As extremidades encontradas recebem um rótulo que indica a parte do corpo que deve representar. Um vetor com as coordenadas das extremidades é gerado. Para descobrir qual a pose do usuário, o vetor com as coordenadas das suas extremidades é classificado. O passo final é a classificação temporal, ou seja, o reconhecimento do gesto. A técnica desenvolvida é robusta, funcionando bem mesmo quando o sistema foi treinado com um usuário e aplicado a dados de outro. |
id |
USP_1d3b51607484e525e99a4536620191af |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23012017-160508 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráficaReal-time segmentation and gesture recognition with cameras and graphical acceleration3D reconstructionGesture recognitionGPUGPUOpenGLOpenGLReal-timeReconhecimento de gestosReconstrução 3DStereo visionTempo realVisão estéreoO objetivo deste trabalho é reconhecer gestos em tempo real apenas com o uso de câmeras, sem marcadores, roupas ou qualquer outro tipo de sensor. A montagem do ambiente de captura é simples, com apenas duas câmeras e um computador. O fundo deve ser estático, e contrastar com o usuário. A ausência de marcadores ou roupas especiais dificulta a tarefa de localizar os membros. A motivação desta tese é criar um ambiente de realidade virtual para treino de goleiros, que possibilite corrigir erros de movimentação, posicionamento e de escolha do método de defesa. A técnica desenvolvida pode ser aplicada para qualquer atividade que envolva gestos ou movimentos do corpo. O reconhecimento de gestos começa com a detecção da região da imagem onde se encontra o usuário. Nessa região, localizamos as regiões mais salientes como candidatas a extremidades do corpo, ou seja, mãos, pés e cabeça. As extremidades encontradas recebem um rótulo que indica a parte do corpo que deve representar. Um vetor com as coordenadas das extremidades é gerado. Para descobrir qual a pose do usuário, o vetor com as coordenadas das suas extremidades é classificado. O passo final é a classificação temporal, ou seja, o reconhecimento do gesto. A técnica desenvolvida é robusta, funcionando bem mesmo quando o sistema foi treinado com um usuário e aplicado a dados de outro.Our aim in this work is to recognize gestures in real time with cameras, without markers or special clothes. The capture environment setup is simple, uses just two cameras and a computer. The background must be static, and its colors must be different the users. The absence of markers or special clothes difficults the location of the users limbs. The motivation of this thesis is to create a virtual reality environment for goalkeeper training, but the technique can be applied in any activity that involves gestures or body movements. The recognition of gestures starts with the background subtraction. From the foreground, we locate the more proeminent regions as candidates to body extremities, that is, hands, feet and head. The found extremities receive a label that indicates the body part it may represent. To classify the users pose, the vector with the coordinates of his extremities is compared to keyposes and the best match is selected. The final step is the temporal classification, that is, the gesture recognition. The developed technique is robust, working well even when the system was trained with an user and applied to another users data.Biblioteca Digitais de Teses e Dissertações da USPBarrera, JuniorDantas, Daniel Oliveira2010-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-23012017-160508Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica Real-time segmentation and gesture recognition with cameras and graphical acceleration |
title |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica |
spellingShingle |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica Dantas, Daniel Oliveira 3D reconstruction Gesture recognition GPU GPU OpenGL OpenGL Real-time Reconhecimento de gestos Reconstrução 3D Stereo vision Tempo real Visão estéreo |
title_short |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica |
title_full |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica |
title_fullStr |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica |
title_full_unstemmed |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica |
title_sort |
Segmentação e reconhecimento de gestos em tempo real com câmeras e aceleração gráfica |
author |
Dantas, Daniel Oliveira |
author_facet |
Dantas, Daniel Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barrera, Junior |
dc.contributor.author.fl_str_mv |
Dantas, Daniel Oliveira |
dc.subject.por.fl_str_mv |
3D reconstruction Gesture recognition GPU GPU OpenGL OpenGL Real-time Reconhecimento de gestos Reconstrução 3D Stereo vision Tempo real Visão estéreo |
topic |
3D reconstruction Gesture recognition GPU GPU OpenGL OpenGL Real-time Reconhecimento de gestos Reconstrução 3D Stereo vision Tempo real Visão estéreo |
description |
O objetivo deste trabalho é reconhecer gestos em tempo real apenas com o uso de câmeras, sem marcadores, roupas ou qualquer outro tipo de sensor. A montagem do ambiente de captura é simples, com apenas duas câmeras e um computador. O fundo deve ser estático, e contrastar com o usuário. A ausência de marcadores ou roupas especiais dificulta a tarefa de localizar os membros. A motivação desta tese é criar um ambiente de realidade virtual para treino de goleiros, que possibilite corrigir erros de movimentação, posicionamento e de escolha do método de defesa. A técnica desenvolvida pode ser aplicada para qualquer atividade que envolva gestos ou movimentos do corpo. O reconhecimento de gestos começa com a detecção da região da imagem onde se encontra o usuário. Nessa região, localizamos as regiões mais salientes como candidatas a extremidades do corpo, ou seja, mãos, pés e cabeça. As extremidades encontradas recebem um rótulo que indica a parte do corpo que deve representar. Um vetor com as coordenadas das extremidades é gerado. Para descobrir qual a pose do usuário, o vetor com as coordenadas das suas extremidades é classificado. O passo final é a classificação temporal, ou seja, o reconhecimento do gesto. A técnica desenvolvida é robusta, funcionando bem mesmo quando o sistema foi treinado com um usuário e aplicado a dados de outro. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012017-160508/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257291665965056 |