Um método para estimar observáveis GPS usando redes neurais artificiais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/ |
Resumo: | O NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS. |
id |
USP_1e397bc2a359d0f88a3fc9563e754864 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18092015-155038 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Um método para estimar observáveis GPS usando redes neurais artificiaisA method to estimate GPS data observables using artificial neural networksArtificial neural networksCódigo PGPSGPSL2 carrierModelagemModellingP codePortadora L2Redes neurais artificiaisO NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS.The NAVSTAR-GPS, with a great variety of receivers and its practical aplicabillity in several areas, transformed itself in the most known positioning system. But the necessity of improving the results precision brings with it a cost increasing caused by the use of equipments of dual frequency equipments. This work consist on the development of a method that makes possible the GPS data modelling using Neural Networks, as well as the aggregation of these data into a file generated by single frequency receiver, providing to the system specific characteristics of files generated by double frequency an P code receiver. This makes possible that data generated by receivers of single frequency, the majority of receivers in Brazil, can be processed as vectors of long bases. The results obtained indicate that the use of Neural Network models, with algorithms of supervised learning are a promissing alternative to estimate GPS data.Biblioteca Digitais de Teses e Dissertações da USPSegantine, Paulo César LimaSilva, Carlos Augusto Uchôa da2003-06-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:58Zoai:teses.usp.br:tde-18092015-155038Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Um método para estimar observáveis GPS usando redes neurais artificiais A method to estimate GPS data observables using artificial neural networks |
title |
Um método para estimar observáveis GPS usando redes neurais artificiais |
spellingShingle |
Um método para estimar observáveis GPS usando redes neurais artificiais Silva, Carlos Augusto Uchôa da Artificial neural networks Código P GPS GPS L2 carrier Modelagem Modelling P code Portadora L2 Redes neurais artificiais |
title_short |
Um método para estimar observáveis GPS usando redes neurais artificiais |
title_full |
Um método para estimar observáveis GPS usando redes neurais artificiais |
title_fullStr |
Um método para estimar observáveis GPS usando redes neurais artificiais |
title_full_unstemmed |
Um método para estimar observáveis GPS usando redes neurais artificiais |
title_sort |
Um método para estimar observáveis GPS usando redes neurais artificiais |
author |
Silva, Carlos Augusto Uchôa da |
author_facet |
Silva, Carlos Augusto Uchôa da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Segantine, Paulo César Lima |
dc.contributor.author.fl_str_mv |
Silva, Carlos Augusto Uchôa da |
dc.subject.por.fl_str_mv |
Artificial neural networks Código P GPS GPS L2 carrier Modelagem Modelling P code Portadora L2 Redes neurais artificiais |
topic |
Artificial neural networks Código P GPS GPS L2 carrier Modelagem Modelling P code Portadora L2 Redes neurais artificiais |
description |
O NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-06-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/ |
url |
http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257111554162688 |