Um método para estimar observáveis GPS usando redes neurais artificiais

Detalhes bibliográficos
Autor(a) principal: Silva, Carlos Augusto Uchôa da
Data de Publicação: 2003
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/
Resumo: O NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS.
id USP_1e397bc2a359d0f88a3fc9563e754864
oai_identifier_str oai:teses.usp.br:tde-18092015-155038
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Um método para estimar observáveis GPS usando redes neurais artificiaisA method to estimate GPS data observables using artificial neural networksArtificial neural networksCódigo PGPSGPSL2 carrierModelagemModellingP codePortadora L2Redes neurais artificiaisO NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS.The NAVSTAR-GPS, with a great variety of receivers and its practical aplicabillity in several areas, transformed itself in the most known positioning system. But the necessity of improving the results precision brings with it a cost increasing caused by the use of equipments of dual frequency equipments. This work consist on the development of a method that makes possible the GPS data modelling using Neural Networks, as well as the aggregation of these data into a file generated by single frequency receiver, providing to the system specific characteristics of files generated by double frequency an P code receiver. This makes possible that data generated by receivers of single frequency, the majority of receivers in Brazil, can be processed as vectors of long bases. The results obtained indicate that the use of Neural Network models, with algorithms of supervised learning are a promissing alternative to estimate GPS data.Biblioteca Digitais de Teses e Dissertações da USPSegantine, Paulo César LimaSilva, Carlos Augusto Uchôa da2003-06-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:58Zoai:teses.usp.br:tde-18092015-155038Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um método para estimar observáveis GPS usando redes neurais artificiais
A method to estimate GPS data observables using artificial neural networks
title Um método para estimar observáveis GPS usando redes neurais artificiais
spellingShingle Um método para estimar observáveis GPS usando redes neurais artificiais
Silva, Carlos Augusto Uchôa da
Artificial neural networks
Código P
GPS
GPS
L2 carrier
Modelagem
Modelling
P code
Portadora L2
Redes neurais artificiais
title_short Um método para estimar observáveis GPS usando redes neurais artificiais
title_full Um método para estimar observáveis GPS usando redes neurais artificiais
title_fullStr Um método para estimar observáveis GPS usando redes neurais artificiais
title_full_unstemmed Um método para estimar observáveis GPS usando redes neurais artificiais
title_sort Um método para estimar observáveis GPS usando redes neurais artificiais
author Silva, Carlos Augusto Uchôa da
author_facet Silva, Carlos Augusto Uchôa da
author_role author
dc.contributor.none.fl_str_mv Segantine, Paulo César Lima
dc.contributor.author.fl_str_mv Silva, Carlos Augusto Uchôa da
dc.subject.por.fl_str_mv Artificial neural networks
Código P
GPS
GPS
L2 carrier
Modelagem
Modelling
P code
Portadora L2
Redes neurais artificiais
topic Artificial neural networks
Código P
GPS
GPS
L2 carrier
Modelagem
Modelling
P code
Portadora L2
Redes neurais artificiais
description O NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS.
publishDate 2003
dc.date.none.fl_str_mv 2003-06-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/
url http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257111554162688