Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09022009-141943/ |
Resumo: | Esta dissertação faz um estudo da aplicação da técnica estatística denominada Análise de Dados Funcionais (ADF) à geração de descritores usados em reconhecimento de padrões, mais especificamente, no reconhecimento de objetos de interesse em imagens. Estes objetos podem ser representados por vetores de características, também chamados de assinaturas, obtidos por uma técnica chamada de Dimensão Fractal Multiescala (DFM). Ocorre que estes vetores apresentam alta dimensionalidade (número de elementos), fazendo-se assim necessário o uso de uma abordagem que reduza este número de valores, sem que haja uma grande perda da informação transmitida pela assinatura. Neste contexto, diversas técnicas de extração de um reduzido conjunto de descritores da assinatura são apresentadas pela literatura. Entre estas, as mais populares são Fourier e \\emph, ambas relativamente simples de se apresentar e com resultados satisfatórios. A proposta aqui apresentada é de se utilizar ADF em combinação com DFM na geração de descritores de padrões. Os resultados obtidos com o uso desta abordagem na geração de descritores demostraram que a técnica possibilita bons resultados, mesmo em situações em que não é possível o uso de muitos descritores. Os experimentos demostraram que ADF apresenta um bom potencial para aplicação neste tipo de problema, permitindo que o método de classificação alcance bons resultados mesmo com poucos descritores. São sugeridos trabalhos futuros em que ADF possa ser usada, pesquisando-se por métodos ainda mais eficazes. |
id |
USP_1e63c397e7edb35c340c5450f798d6e0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09022009-141943 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescalaFunctional Data Analysis Applied to Descriptors Generation of Multiscale Fractal Dimension Signatures.Análise de dados funcionais. Dimensão fractal multiescala. Reconhecimento de padrões. Descritores frFunctional data analysis. Multi-scale fractal dimension. Pattern recognition. Fractal descriptors.Esta dissertação faz um estudo da aplicação da técnica estatística denominada Análise de Dados Funcionais (ADF) à geração de descritores usados em reconhecimento de padrões, mais especificamente, no reconhecimento de objetos de interesse em imagens. Estes objetos podem ser representados por vetores de características, também chamados de assinaturas, obtidos por uma técnica chamada de Dimensão Fractal Multiescala (DFM). Ocorre que estes vetores apresentam alta dimensionalidade (número de elementos), fazendo-se assim necessário o uso de uma abordagem que reduza este número de valores, sem que haja uma grande perda da informação transmitida pela assinatura. Neste contexto, diversas técnicas de extração de um reduzido conjunto de descritores da assinatura são apresentadas pela literatura. Entre estas, as mais populares são Fourier e \\emph, ambas relativamente simples de se apresentar e com resultados satisfatórios. A proposta aqui apresentada é de se utilizar ADF em combinação com DFM na geração de descritores de padrões. Os resultados obtidos com o uso desta abordagem na geração de descritores demostraram que a técnica possibilita bons resultados, mesmo em situações em que não é possível o uso de muitos descritores. Os experimentos demostraram que ADF apresenta um bom potencial para aplicação neste tipo de problema, permitindo que o método de classificação alcance bons resultados mesmo com poucos descritores. São sugeridos trabalhos futuros em que ADF possa ser usada, pesquisando-se por métodos ainda mais eficazes.This work studies the application of a statistical technique named Functional Data Analysis (FDA) for the generation of descriptors. These descriptors can be used for pattern recognition, more specifically, for the recognition of relevant objects in an image. These objects can be represented by features vectors, also known as signatures, obtained by a technique named Multi-scale Fractal Dimension (MFD). These vectors present a high dimensionality (number of elements), causing to be necessary the use of an approach for the reduction of this number of values, but without a large loss of information carried by the signature. In this context, several techniques for the extraction of a reduced set of signature descriptors are studied in the literature. Among these techniques, the most classic are Fourier and wavelets, both with simple presentation and providing satisfactory results. The proposal presented here is the use of FDA combined with MFD for the generation of pattern descriptors. The results obtained by the use of this approach for the generation of descriptors showed that this technique allows the obtention of good results, even in situations in wich is not possible the use of many descriptors. FDA was also applied to the extraction of descriptors of MFD texture signatures. Also in this case, the results were interesting. The experiments showed the FDA presents a good potential for the application to this type of problem, allowing the obtention of good results even by using a few descriptors. It is suggested future works in which FDA can be used, researching for still more efficient methods.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezFlorindo, João Batista2009-01-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-09022009-141943/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-09022009-141943Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala Functional Data Analysis Applied to Descriptors Generation of Multiscale Fractal Dimension Signatures. |
title |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala |
spellingShingle |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala Florindo, João Batista Análise de dados funcionais. Dimensão fractal multiescala. Reconhecimento de padrões. Descritores fr Functional data analysis. Multi-scale fractal dimension. Pattern recognition. Fractal descriptors. |
title_short |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala |
title_full |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala |
title_fullStr |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala |
title_full_unstemmed |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala |
title_sort |
Análise de dados funcionais aplicada à geração de descritores de assinaturas de dimensão fractal multiescala |
author |
Florindo, João Batista |
author_facet |
Florindo, João Batista |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bruno, Odemir Martinez |
dc.contributor.author.fl_str_mv |
Florindo, João Batista |
dc.subject.por.fl_str_mv |
Análise de dados funcionais. Dimensão fractal multiescala. Reconhecimento de padrões. Descritores fr Functional data analysis. Multi-scale fractal dimension. Pattern recognition. Fractal descriptors. |
topic |
Análise de dados funcionais. Dimensão fractal multiescala. Reconhecimento de padrões. Descritores fr Functional data analysis. Multi-scale fractal dimension. Pattern recognition. Fractal descriptors. |
description |
Esta dissertação faz um estudo da aplicação da técnica estatística denominada Análise de Dados Funcionais (ADF) à geração de descritores usados em reconhecimento de padrões, mais especificamente, no reconhecimento de objetos de interesse em imagens. Estes objetos podem ser representados por vetores de características, também chamados de assinaturas, obtidos por uma técnica chamada de Dimensão Fractal Multiescala (DFM). Ocorre que estes vetores apresentam alta dimensionalidade (número de elementos), fazendo-se assim necessário o uso de uma abordagem que reduza este número de valores, sem que haja uma grande perda da informação transmitida pela assinatura. Neste contexto, diversas técnicas de extração de um reduzido conjunto de descritores da assinatura são apresentadas pela literatura. Entre estas, as mais populares são Fourier e \\emph, ambas relativamente simples de se apresentar e com resultados satisfatórios. A proposta aqui apresentada é de se utilizar ADF em combinação com DFM na geração de descritores de padrões. Os resultados obtidos com o uso desta abordagem na geração de descritores demostraram que a técnica possibilita bons resultados, mesmo em situações em que não é possível o uso de muitos descritores. Os experimentos demostraram que ADF apresenta um bom potencial para aplicação neste tipo de problema, permitindo que o método de classificação alcance bons resultados mesmo com poucos descritores. São sugeridos trabalhos futuros em que ADF possa ser usada, pesquisando-se por métodos ainda mais eficazes. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09022009-141943/ |
url |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09022009-141943/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256822805692416 |