Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla

Detalhes bibliográficos
Autor(a) principal: Aragon, Davi Casale
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/17/17139/tde-06062017-170620/
Resumo: Dados de s´eries temporais s~ao originados a partir de estudos em que se reportam, por exemplo, taxas de mortalidade, n´umero de hospitaliza¸c~oes, de infec¸c~oes por alguma doen¸ca ou outro evento de interesse, em per´?odos definidos (dia, semana, m^es ou ano), objetivando-se observar tend^encias, sazonalidades ou fatores associados. Dados de contagem s~ao aqueles representados pelas vari´aveis quantitativas discretas, ou seja, observa¸c~oes que assumem valores inteiros, no intervalo {0, 1, 2, 3, ...}, por exemplo, o n´umero de filhos de casais residentes em um bairro. Diante dessa particularidade, ferramentas estat´?sticas adequadas devem ser utilizadas, e modelos baseados na distribui¸c~ao de Poisson apresentam-se como op¸c~oes mais indicadas do que os baseados nos m´etodos propostos por Box e Jenkins (2008), usualmente utilizados para an´alise de dados cont´?nuos, mas empregados para dados discretos, ap´os transforma¸c~oes logar´?tmicas. Uma limita¸c~ao da distribui¸c~ao de Poisson ´e que ela assume m´edia e vari^ancia iguais, sendo um obst´aculo nos casos em que h´a superdispers~ao (vari^ancia maior que a m´edia) ou subdispers~ao (vari^ancia menor que a m´edia). Diante disso, a distribui¸c~ao Poisson Dupla, proposta por Efron (1986), surge como alternativa, pois permite se estimarem os par^ametros de m´edia e vari^ancia, nos casos em que a vari^ancia dos dados ´e menor, igual ou maior que a m´edia, fornecendo grande flexibilidade aos modelos. Este trabalho teve como objetivo principal o desenvolvimento de modelos Bayesianos de s´eries temporais para dados de contagem, utilizando-se distribui¸c~oes de probabilidade para vari´aveis discretas, tais como de Poisson e Poisson Dupla. Al´em disso, foi introduzido um modelo baseado na distribui¸c~ao Poisson Dupla para dados de contagem com excesso de zeros. Os resultados obtidos pelo ajuste dos modelos de s´eries temporais baseados na distribui¸c~ao Poisson Dupla foram comparados com aqueles obtidos por meio do uso da distribui¸c~ao de Poisson. Como aplica¸c~oes principais, foram apresentados resultados obtidos pelo ajuste de modelos para dados de registros de acidentes com picadas de cobras, no Estado de S~ao Paulo, e picadas de escorpi~oes, na cidade de Ribeir~ao Preto, SP, entre os anos de 2007 e 2014. Com rela¸c~ao a esta ´ultima aplica¸c~ao, foram consideradas covari´aveis referentes a dados clim´aticos, como temperaturas m´aximas e m´?nimas m´edias mensais e precipita¸c~ao. Nas situa¸c~oes em que a vari^ancia era diferente da m´edia, modelos baseados na distribui¸c~ao Poisson Dupla mostraram melhor ajuste aos dados, quando comparados aos modelos de Poisson.
id USP_1f8c899bbcc3195f9f4c795fa14a8770
oai_identifier_str oai:teses.usp.br:tde-06062017-170620
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de séries temporais de dados de contagem baseados na distribuição Poisson DuplaCount data time series models based on Double Poisson distributionBayesian MethodsDouble PoissonM´etodos BayesianosPoisson DuplaS´eries TemporaisTime SeriesDados de s´eries temporais s~ao originados a partir de estudos em que se reportam, por exemplo, taxas de mortalidade, n´umero de hospitaliza¸c~oes, de infec¸c~oes por alguma doen¸ca ou outro evento de interesse, em per´?odos definidos (dia, semana, m^es ou ano), objetivando-se observar tend^encias, sazonalidades ou fatores associados. Dados de contagem s~ao aqueles representados pelas vari´aveis quantitativas discretas, ou seja, observa¸c~oes que assumem valores inteiros, no intervalo {0, 1, 2, 3, ...}, por exemplo, o n´umero de filhos de casais residentes em um bairro. Diante dessa particularidade, ferramentas estat´?sticas adequadas devem ser utilizadas, e modelos baseados na distribui¸c~ao de Poisson apresentam-se como op¸c~oes mais indicadas do que os baseados nos m´etodos propostos por Box e Jenkins (2008), usualmente utilizados para an´alise de dados cont´?nuos, mas empregados para dados discretos, ap´os transforma¸c~oes logar´?tmicas. Uma limita¸c~ao da distribui¸c~ao de Poisson ´e que ela assume m´edia e vari^ancia iguais, sendo um obst´aculo nos casos em que h´a superdispers~ao (vari^ancia maior que a m´edia) ou subdispers~ao (vari^ancia menor que a m´edia). Diante disso, a distribui¸c~ao Poisson Dupla, proposta por Efron (1986), surge como alternativa, pois permite se estimarem os par^ametros de m´edia e vari^ancia, nos casos em que a vari^ancia dos dados ´e menor, igual ou maior que a m´edia, fornecendo grande flexibilidade aos modelos. Este trabalho teve como objetivo principal o desenvolvimento de modelos Bayesianos de s´eries temporais para dados de contagem, utilizando-se distribui¸c~oes de probabilidade para vari´aveis discretas, tais como de Poisson e Poisson Dupla. Al´em disso, foi introduzido um modelo baseado na distribui¸c~ao Poisson Dupla para dados de contagem com excesso de zeros. Os resultados obtidos pelo ajuste dos modelos de s´eries temporais baseados na distribui¸c~ao Poisson Dupla foram comparados com aqueles obtidos por meio do uso da distribui¸c~ao de Poisson. Como aplica¸c~oes principais, foram apresentados resultados obtidos pelo ajuste de modelos para dados de registros de acidentes com picadas de cobras, no Estado de S~ao Paulo, e picadas de escorpi~oes, na cidade de Ribeir~ao Preto, SP, entre os anos de 2007 e 2014. Com rela¸c~ao a esta ´ultima aplica¸c~ao, foram consideradas covari´aveis referentes a dados clim´aticos, como temperaturas m´aximas e m´?nimas m´edias mensais e precipita¸c~ao. Nas situa¸c~oes em que a vari^ancia era diferente da m´edia, modelos baseados na distribui¸c~ao Poisson Dupla mostraram melhor ajuste aos dados, quando comparados aos modelos de Poisson.Time series data are derived from studies in which there are reported mortality, number of hospitalizations infections by disease or other event of interest per day, week, month or year, in order to observe trends, seasonality or associated factors. Count data are represented by discrete quantitative variables, i.e. observations that take integer values in the range {0, 1, 2, 3, ...}. In view of this particular characteristic, such data must be analyzed by adequate statistical tools and the Poisson distribution is an option for modeling, being more suitable than models based on methods proposed by Box and Jenkins (2008), usually applied for continuous data, but used in the modeling of discrete data after logarithmic transformation. A limitation of the Poisson distribution is that it assumes equal mean and variance being an obstacle in cases which there are data overdispersion (variance higher than mean) or underdispersion (variance lower than mean). Therefore the Double Poisson distribution, proposed by Efron (1986), is an alternative because it allows to estimate the mean and variance parameters in cases wich variance of the data is lower, equal, or higher than mean providing great flexibility to the models. This work aims to develop time series models for count data, under Bayesian approach using probability distributions for discrete variables such as Poisson and Double Poisson. Furthermore it will be introduced a zero-inflated Double Poisson model to excess zeros counting data. The results obtained by adjusting the time series models based on Double Poisson distribution are compared with those obtained by considering the Poisson distribution. As main applications modeling of snake bites reports in the State of S~ao Paulo and scorpion stings in the city of Ribeir~ao Preto considering covariates as maximum and minimum average monthly temperatures and rainfall among the years 2007 and 2014 will be presented. Regression models based on double Poisson distribution showed a better fit to the data, when compared to Poisson models.Biblioteca Digitais de Teses e Dissertações da USPMartinez, Edson ZangiacomiAragon, Davi Casale2016-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17139/tde-06062017-170620/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-20T20:18:02Zoai:teses.usp.br:tde-06062017-170620Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-20T20:18:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
Count data time series models based on Double Poisson distribution
title Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
spellingShingle Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
Aragon, Davi Casale
Bayesian Methods
Double Poisson
M´etodos Bayesianos
Poisson Dupla
S´eries Temporais
Time Series
title_short Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
title_full Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
title_fullStr Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
title_full_unstemmed Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
title_sort Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla
author Aragon, Davi Casale
author_facet Aragon, Davi Casale
author_role author
dc.contributor.none.fl_str_mv Martinez, Edson Zangiacomi
dc.contributor.author.fl_str_mv Aragon, Davi Casale
dc.subject.por.fl_str_mv Bayesian Methods
Double Poisson
M´etodos Bayesianos
Poisson Dupla
S´eries Temporais
Time Series
topic Bayesian Methods
Double Poisson
M´etodos Bayesianos
Poisson Dupla
S´eries Temporais
Time Series
description Dados de s´eries temporais s~ao originados a partir de estudos em que se reportam, por exemplo, taxas de mortalidade, n´umero de hospitaliza¸c~oes, de infec¸c~oes por alguma doen¸ca ou outro evento de interesse, em per´?odos definidos (dia, semana, m^es ou ano), objetivando-se observar tend^encias, sazonalidades ou fatores associados. Dados de contagem s~ao aqueles representados pelas vari´aveis quantitativas discretas, ou seja, observa¸c~oes que assumem valores inteiros, no intervalo {0, 1, 2, 3, ...}, por exemplo, o n´umero de filhos de casais residentes em um bairro. Diante dessa particularidade, ferramentas estat´?sticas adequadas devem ser utilizadas, e modelos baseados na distribui¸c~ao de Poisson apresentam-se como op¸c~oes mais indicadas do que os baseados nos m´etodos propostos por Box e Jenkins (2008), usualmente utilizados para an´alise de dados cont´?nuos, mas empregados para dados discretos, ap´os transforma¸c~oes logar´?tmicas. Uma limita¸c~ao da distribui¸c~ao de Poisson ´e que ela assume m´edia e vari^ancia iguais, sendo um obst´aculo nos casos em que h´a superdispers~ao (vari^ancia maior que a m´edia) ou subdispers~ao (vari^ancia menor que a m´edia). Diante disso, a distribui¸c~ao Poisson Dupla, proposta por Efron (1986), surge como alternativa, pois permite se estimarem os par^ametros de m´edia e vari^ancia, nos casos em que a vari^ancia dos dados ´e menor, igual ou maior que a m´edia, fornecendo grande flexibilidade aos modelos. Este trabalho teve como objetivo principal o desenvolvimento de modelos Bayesianos de s´eries temporais para dados de contagem, utilizando-se distribui¸c~oes de probabilidade para vari´aveis discretas, tais como de Poisson e Poisson Dupla. Al´em disso, foi introduzido um modelo baseado na distribui¸c~ao Poisson Dupla para dados de contagem com excesso de zeros. Os resultados obtidos pelo ajuste dos modelos de s´eries temporais baseados na distribui¸c~ao Poisson Dupla foram comparados com aqueles obtidos por meio do uso da distribui¸c~ao de Poisson. Como aplica¸c~oes principais, foram apresentados resultados obtidos pelo ajuste de modelos para dados de registros de acidentes com picadas de cobras, no Estado de S~ao Paulo, e picadas de escorpi~oes, na cidade de Ribeir~ao Preto, SP, entre os anos de 2007 e 2014. Com rela¸c~ao a esta ´ultima aplica¸c~ao, foram consideradas covari´aveis referentes a dados clim´aticos, como temperaturas m´aximas e m´?nimas m´edias mensais e precipita¸c~ao. Nas situa¸c~oes em que a vari^ancia era diferente da m´edia, modelos baseados na distribui¸c~ao Poisson Dupla mostraram melhor ajuste aos dados, quando comparados aos modelos de Poisson.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/17/17139/tde-06062017-170620/
url http://www.teses.usp.br/teses/disponiveis/17/17139/tde-06062017-170620/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256718665318400