Estados coerentes: o grupo simplético e generalizações.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19092007-110355/ |
Resumo: | O objetivo desta Tese foi a aplicação da teoria dos estados coerentes para sistemas quânticos não-triviais. A partir da definição de estados coerentes para grupos de Lie compactos em geral, nos dedicamos a uma investigação detalhada da construção de tais estados e de suas propriedades no caso do grupo simplético unitário Sp(4), que é extremamente importante tanto em mecânica quântica quanto em mecânica clássica. Esse grupo possui uma complexidade intermediária, que permite um tratamento analítico ainda que apresente propriedades não-triviais do ponto de vista de teoria de representação de álgebras de Lie. Os estados coerentes obtidos nos permitiram uma investigação do limite clássico para sistemas com simetria Sp(4) e uma conexão com a teoria do caos em mecânica quântica. Além disso, tratamos uma proposta recente de generalização do conceito de estados coerentes para sistemas de espectro discreto não-degenerado, os estados de Gazeau-Klauder. Esses estados foram aplicados a um problema de magnetização bidimensional e também ao potencial unidimensional de mínimos duplos, onde observamos o aparecimento dos estados chamados \"Gatos de Schrödinger\", que consistem na superposição de dois estados de mínima incerteza. |
id |
USP_1fa93dbfa5ba7214e17c0159ac6557c2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19092007-110355 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estados coerentes: o grupo simplético e generalizações.Coherent states: the symplectic goup and generalizationsÁlgebras de LieCoherent statesEstados coerentesLie algebrasMétodos semiclássicosSemiclassical methodsO objetivo desta Tese foi a aplicação da teoria dos estados coerentes para sistemas quânticos não-triviais. A partir da definição de estados coerentes para grupos de Lie compactos em geral, nos dedicamos a uma investigação detalhada da construção de tais estados e de suas propriedades no caso do grupo simplético unitário Sp(4), que é extremamente importante tanto em mecânica quântica quanto em mecânica clássica. Esse grupo possui uma complexidade intermediária, que permite um tratamento analítico ainda que apresente propriedades não-triviais do ponto de vista de teoria de representação de álgebras de Lie. Os estados coerentes obtidos nos permitiram uma investigação do limite clássico para sistemas com simetria Sp(4) e uma conexão com a teoria do caos em mecânica quântica. Além disso, tratamos uma proposta recente de generalização do conceito de estados coerentes para sistemas de espectro discreto não-degenerado, os estados de Gazeau-Klauder. Esses estados foram aplicados a um problema de magnetização bidimensional e também ao potencial unidimensional de mínimos duplos, onde observamos o aparecimento dos estados chamados \"Gatos de Schrödinger\", que consistem na superposição de dois estados de mínima incerteza.The subject of the Thesis was the aplication of the coherent states theory to non-trivial quantum systems. Starting from the general definition of coherent states for compact Lie groups, we made a detailed investigation of the construction of these states and its properties in the case of the unitary symplectic group Sp(4), which is extremely important in both quantum and classical mechanics. This group has an intermediate complexity, allowing an analytic treatment while presenting non-trivial properties from the point of view of represention theory of Lie algebras. The coherent states so obtained allowed us an investigation of the classical limit of systems with Sp(4) symmetry and a conection with the theory of chaos in quantum mechanics. Besides that, we have treated a recent generalization of the concept of coherent states for systems with discrete and nondegenerate spectrum, the Gazeau-Klauder states. These states were applied to a twodimensional magnetization problem and also to the onedimensional double-well potential, where we have observed the appearence of the so-called \"Schrödinger cats\", which consist in the superposition of two minimum-uncertainty states.Biblioteca Digitais de Teses e Dissertações da USPHornos, Jose Eduardo MartinhoNovaes, Marcel2003-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-19092007-110355/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:54Zoai:teses.usp.br:tde-19092007-110355Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estados coerentes: o grupo simplético e generalizações. Coherent states: the symplectic goup and generalizations |
title |
Estados coerentes: o grupo simplético e generalizações. |
spellingShingle |
Estados coerentes: o grupo simplético e generalizações. Novaes, Marcel Álgebras de Lie Coherent states Estados coerentes Lie algebras Métodos semiclássicos Semiclassical methods |
title_short |
Estados coerentes: o grupo simplético e generalizações. |
title_full |
Estados coerentes: o grupo simplético e generalizações. |
title_fullStr |
Estados coerentes: o grupo simplético e generalizações. |
title_full_unstemmed |
Estados coerentes: o grupo simplético e generalizações. |
title_sort |
Estados coerentes: o grupo simplético e generalizações. |
author |
Novaes, Marcel |
author_facet |
Novaes, Marcel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Hornos, Jose Eduardo Martinho |
dc.contributor.author.fl_str_mv |
Novaes, Marcel |
dc.subject.por.fl_str_mv |
Álgebras de Lie Coherent states Estados coerentes Lie algebras Métodos semiclássicos Semiclassical methods |
topic |
Álgebras de Lie Coherent states Estados coerentes Lie algebras Métodos semiclássicos Semiclassical methods |
description |
O objetivo desta Tese foi a aplicação da teoria dos estados coerentes para sistemas quânticos não-triviais. A partir da definição de estados coerentes para grupos de Lie compactos em geral, nos dedicamos a uma investigação detalhada da construção de tais estados e de suas propriedades no caso do grupo simplético unitário Sp(4), que é extremamente importante tanto em mecânica quântica quanto em mecânica clássica. Esse grupo possui uma complexidade intermediária, que permite um tratamento analítico ainda que apresente propriedades não-triviais do ponto de vista de teoria de representação de álgebras de Lie. Os estados coerentes obtidos nos permitiram uma investigação do limite clássico para sistemas com simetria Sp(4) e uma conexão com a teoria do caos em mecânica quântica. Além disso, tratamos uma proposta recente de generalização do conceito de estados coerentes para sistemas de espectro discreto não-degenerado, os estados de Gazeau-Klauder. Esses estados foram aplicados a um problema de magnetização bidimensional e também ao potencial unidimensional de mínimos duplos, onde observamos o aparecimento dos estados chamados \"Gatos de Schrödinger\", que consistem na superposição de dois estados de mínima incerteza. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-11-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19092007-110355/ |
url |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19092007-110355/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257130728423424 |