Topology optimization of fluid diodes based on integer linear programming.

Detalhes bibliográficos
Autor(a) principal: Souza, Bruno Caldas de
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-134145/
Resumo: Fluid diodes are devices that inhibit the fluid to flow from one environment to another and allowing in some cases the opposite direction to occur. A well-known example is the Tesla valve. There is a particular type of fluid diode used to minimize leakage in turbines and compressors called labyrinth seals, which optimization can bring major improvement related to CO2 and CH4 emissions. Topology optimization is a powerful tool, which has already been applied to design some plane 2D fluid diodes. So, with this environmental issue in mind and in order to find new efficient labyrinth seals, the scope of this work is to develop a new formulation of topology optimization to obtain innovative and non-intuitive designs of fluid diodes focused on labyrinth seals. As a first contribution, the formulation of topology optimization proposed in this work is based on the integer linear programming. In the current implementation of topology optimization for fluids considering density methods, there are essentially two problems. First, the gray scale in the result makes it difficult to identify the fluid mesh outline, which can be a problem in some applications and also during the optimization process. Second, even for low Reynolds flow design problems, a continuation scheme of the material model penalty parameters is necessary to avoid gray scale and to obtain clear solid/fluid boundaries. This work proposes a new methodology that solves these two problems, that is, it avoids gray scale and obtains clearer solid and fluid boundaries. In the labyrinth seal design, on the other hand, it presents fixed parts (stator) and rotational parts (axis), as well as a second contribution, a classification algorithm is implemented to identify parts belonging to the shaft and, thus, apply rotational boundary conditions to every solid that appears during topolgy optimization. Finally, an objective function considering some fluid-structure interaction is defined to prevent the appearance of islands, which are very common in this type of project, however, they are not acceptable in axysymmetric designs of labyrinth seals. Thus the defined multi-objective function contains terms of dissipation energy, vorticity and structural functions. Regarding the geometry of the labyrinth seal, the problem is modeled with a 2D swirl finite element model. The calculation of sensitivities and the linearization of the problem for optimization in integer variables is described. Numerical implementation is done in Python with the aid of finite element libraries (FEniCS) to calculate the direct and adjoint problem. The IBM proprietary optimization library (CPlex) is used as an optimization algorithm. As results, optimized labyrinth seal designs obtained according to the project objective are presented, varying the rotation, leakage patterns and aspect ratio of the project domain.
id USP_1fd909c099f4f5f224d87e74a5eec11d
oai_identifier_str oai:teses.usp.br:tde-18052021-134145
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Topology optimization of fluid diodes based on integer linear programming.Otimização topológica de diodos fluídicos baseada em programação linear inteira.Dinâmica dos fluidos (Simulação)Diodos fluídicosFenicsFinite element methodFluid DiodesJuntas labrintosLabyrinth sealMétodo dos elementos finitosMétodos topológicos (Otimização)TOBSTopology optimizationFluid diodes are devices that inhibit the fluid to flow from one environment to another and allowing in some cases the opposite direction to occur. A well-known example is the Tesla valve. There is a particular type of fluid diode used to minimize leakage in turbines and compressors called labyrinth seals, which optimization can bring major improvement related to CO2 and CH4 emissions. Topology optimization is a powerful tool, which has already been applied to design some plane 2D fluid diodes. So, with this environmental issue in mind and in order to find new efficient labyrinth seals, the scope of this work is to develop a new formulation of topology optimization to obtain innovative and non-intuitive designs of fluid diodes focused on labyrinth seals. As a first contribution, the formulation of topology optimization proposed in this work is based on the integer linear programming. In the current implementation of topology optimization for fluids considering density methods, there are essentially two problems. First, the gray scale in the result makes it difficult to identify the fluid mesh outline, which can be a problem in some applications and also during the optimization process. Second, even for low Reynolds flow design problems, a continuation scheme of the material model penalty parameters is necessary to avoid gray scale and to obtain clear solid/fluid boundaries. This work proposes a new methodology that solves these two problems, that is, it avoids gray scale and obtains clearer solid and fluid boundaries. In the labyrinth seal design, on the other hand, it presents fixed parts (stator) and rotational parts (axis), as well as a second contribution, a classification algorithm is implemented to identify parts belonging to the shaft and, thus, apply rotational boundary conditions to every solid that appears during topolgy optimization. Finally, an objective function considering some fluid-structure interaction is defined to prevent the appearance of islands, which are very common in this type of project, however, they are not acceptable in axysymmetric designs of labyrinth seals. Thus the defined multi-objective function contains terms of dissipation energy, vorticity and structural functions. Regarding the geometry of the labyrinth seal, the problem is modeled with a 2D swirl finite element model. The calculation of sensitivities and the linearization of the problem for optimization in integer variables is described. Numerical implementation is done in Python with the aid of finite element libraries (FEniCS) to calculate the direct and adjoint problem. The IBM proprietary optimization library (CPlex) is used as an optimization algorithm. As results, optimized labyrinth seal designs obtained according to the project objective are presented, varying the rotation, leakage patterns and aspect ratio of the project domain.Diodos fluídicos são dispositivos que inibem o fluxo de fluido de um ambiente para outro, porém permitindo que em alguns casos ocorra o sentido oposto. Um exemplo bem conhecido é a válvula Tesla. Existe um tipo particular de diodo fluídico usado para minimizar vazamentos em turbinas e compressores chamados selos labirinto, cuja otimização pode trazer grandes melhorias relacionadas às emissões de CO2 e CH4. A otimização topológica é uma ferramenta de otimização poderosa, que já foi aplicada para projetar alguns diodos fluidos planos 2D. Assim, com esta questão ambiental em mente e a fim de encontrar novos selos labirintos eficientes, o escopo deste trabalho é desenvolver uma nova formulação de otimização topológica para obter projetos inovadores e não intuitivos de diodos fluídicos focado em selos labirintos. Como primeira contribuição, a formulação de otimização topológica proposta neste trabalho baseia-se na programação linear inteira. Na atual implementação de otimização de topológica para fluidos considerando métodos de densidade, existem essencialmente dois problemas. Primeiramente, a escala de cinza no resultado dificulta a identificação do contorno da malha do fluido, o que pode ser um problema em algumas aplicações também durante o processo de otimização. Em segundo lugar, mesmo para problemas de projeto de fluxo de Reynolds baixo, um esquema de continuação dos parâmetros de penalização do modelo de material é necessário para evitar a escala de cinza e para obter fronteiras sólido/fluido claras. Este trabalho propõe uma nova metodologia que resolve esses dois problemas, ou seja, evita a escala de cinza e obtém fronteiras de sólido e fluido mais claras. Já no projeto do selo labirinto, o mesmo apresenta partes fixas (estator) e rotacionais (eixo), assim como segunda contribuição, um algoritmo de classificação é implementado para identificar partes pertencentes ao eixo e ao sólido e desta forma aplicar condições de contorno rotacionais a cada sólido que surge durante a otimização topológica. Finalmente, uma função objetivo considerando alguma interação fluido-estrutura é definida para evitar o surgimento de ilhas, que são muito comuns neste tipo de projeto, porém não são aceitáveis em projetos axissimétricos de selos labirinto. Assim a função multiobjetivo definida contém termos de energia de dissipação, vorticidade e funções estruturais. Com relação à geometria do selo labirinto, o problema é modelado com um modelo de elemento finito girante 2D. E descrito o cálculo de sensibilidades e a linearização do problema para otimização em variáveis inteiras. A implementação numérica é feita em Python com o auxílio de bibliotecas de elementos finitos (FEniCS) para calcular o problema direto e adjunto. A biblioteca de otimização proprietária da IBM (CPlex) é usada como algoritmo de otimização. Como resultados são apresentados projetos de selo labirinto otimizados obtidos de acordo com o objetivo do projeto, variando a rotação, padrões de vazamento e razão de aspecto do domínio do projeto.Biblioteca Digitais de Teses e Dissertações da USPSilva, Emilio Carlos NelliSouza, Bruno Caldas de2021-04-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-134145/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-18T20:20:02Zoai:teses.usp.br:tde-18052021-134145Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-18T20:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Topology optimization of fluid diodes based on integer linear programming.
Otimização topológica de diodos fluídicos baseada em programação linear inteira.
title Topology optimization of fluid diodes based on integer linear programming.
spellingShingle Topology optimization of fluid diodes based on integer linear programming.
Souza, Bruno Caldas de
Dinâmica dos fluidos (Simulação)
Diodos fluídicos
Fenics
Finite element method
Fluid Diodes
Juntas labrintos
Labyrinth seal
Método dos elementos finitos
Métodos topológicos (Otimização)
TOBS
Topology optimization
title_short Topology optimization of fluid diodes based on integer linear programming.
title_full Topology optimization of fluid diodes based on integer linear programming.
title_fullStr Topology optimization of fluid diodes based on integer linear programming.
title_full_unstemmed Topology optimization of fluid diodes based on integer linear programming.
title_sort Topology optimization of fluid diodes based on integer linear programming.
author Souza, Bruno Caldas de
author_facet Souza, Bruno Caldas de
author_role author
dc.contributor.none.fl_str_mv Silva, Emilio Carlos Nelli
dc.contributor.author.fl_str_mv Souza, Bruno Caldas de
dc.subject.por.fl_str_mv Dinâmica dos fluidos (Simulação)
Diodos fluídicos
Fenics
Finite element method
Fluid Diodes
Juntas labrintos
Labyrinth seal
Método dos elementos finitos
Métodos topológicos (Otimização)
TOBS
Topology optimization
topic Dinâmica dos fluidos (Simulação)
Diodos fluídicos
Fenics
Finite element method
Fluid Diodes
Juntas labrintos
Labyrinth seal
Método dos elementos finitos
Métodos topológicos (Otimização)
TOBS
Topology optimization
description Fluid diodes are devices that inhibit the fluid to flow from one environment to another and allowing in some cases the opposite direction to occur. A well-known example is the Tesla valve. There is a particular type of fluid diode used to minimize leakage in turbines and compressors called labyrinth seals, which optimization can bring major improvement related to CO2 and CH4 emissions. Topology optimization is a powerful tool, which has already been applied to design some plane 2D fluid diodes. So, with this environmental issue in mind and in order to find new efficient labyrinth seals, the scope of this work is to develop a new formulation of topology optimization to obtain innovative and non-intuitive designs of fluid diodes focused on labyrinth seals. As a first contribution, the formulation of topology optimization proposed in this work is based on the integer linear programming. In the current implementation of topology optimization for fluids considering density methods, there are essentially two problems. First, the gray scale in the result makes it difficult to identify the fluid mesh outline, which can be a problem in some applications and also during the optimization process. Second, even for low Reynolds flow design problems, a continuation scheme of the material model penalty parameters is necessary to avoid gray scale and to obtain clear solid/fluid boundaries. This work proposes a new methodology that solves these two problems, that is, it avoids gray scale and obtains clearer solid and fluid boundaries. In the labyrinth seal design, on the other hand, it presents fixed parts (stator) and rotational parts (axis), as well as a second contribution, a classification algorithm is implemented to identify parts belonging to the shaft and, thus, apply rotational boundary conditions to every solid that appears during topolgy optimization. Finally, an objective function considering some fluid-structure interaction is defined to prevent the appearance of islands, which are very common in this type of project, however, they are not acceptable in axysymmetric designs of labyrinth seals. Thus the defined multi-objective function contains terms of dissipation energy, vorticity and structural functions. Regarding the geometry of the labyrinth seal, the problem is modeled with a 2D swirl finite element model. The calculation of sensitivities and the linearization of the problem for optimization in integer variables is described. Numerical implementation is done in Python with the aid of finite element libraries (FEniCS) to calculate the direct and adjoint problem. The IBM proprietary optimization library (CPlex) is used as an optimization algorithm. As results, optimized labyrinth seal designs obtained according to the project objective are presented, varying the rotation, leakage patterns and aspect ratio of the project domain.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-134145/
url https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-134145/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090830145683456