Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.

Detalhes bibliográficos
Autor(a) principal: Ozaki, Sérgio Tonzar Ristori
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/
Resumo: A adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior.
id USP_228c96472534ff5f1dc48a3d64d69740
oai_identifier_str oai:teses.usp.br:tde-08122011-095611
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.Fuel adulteration detection using electrodepositated polymer sensors and artificial neural networks.Artificial neural networksChemical sensorsCombustíveis veicularesFalsificaçãoFalsificationRedes neurais artificiaisSensores químicosVehicular fuelA adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior.Fuel adulteration is a major concern in Brazil. The local governmental agency detects from 1 to 3% of problematic samples yearly, which is a lot considering Brazils market size. The myriad of adulteration possibilities is vast and it is very dynamic, thus array of sensors based on global selectivity concept seems to be more suitable methodology to detect problems in fuel. The global selectivity concept encompasses the cross-sensitivity of non-specific chemical sensors and the use of multivariated data analysis methods as a way to provide fingerprints for samples of different chemical composition. The chemical sensors can employ different types of sensoactive materials, whose electrical responses are dependent on the physicochemical characteristics of the media they get in contact with. Conducting polymers (CP) are per excellence suitable sensoactive materials, since their electrical conductivity is highly influenced by the environmental conditions and they can be easily processed in the thin film form by different techniques. In the present work films of poly(3-methylthiophene) (PMTh) and poly(3-hexylthiophene) (PHTh) are deposited by chronopotenciometry and chronoamperometry onto interdigitated microelectrodes and characterized through Impedance Spectroscopy. This data was analyzed with Multilayer perceptron neural networks and a very good performance is found in gasoline adulteration detection. A less great performance was also achieved in the investigation vehicular ethanol adulteration.Biblioteca Digitais de Teses e Dissertações da USPFonseca, Fernando JosepettiOzaki, Sérgio Tonzar Ristori2010-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-08122011-095611Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
Fuel adulteration detection using electrodepositated polymer sensors and artificial neural networks.
title Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
spellingShingle Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
Ozaki, Sérgio Tonzar Ristori
Artificial neural networks
Chemical sensors
Combustíveis veiculares
Falsificação
Falsification
Redes neurais artificiais
Sensores químicos
Vehicular fuel
title_short Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
title_full Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
title_fullStr Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
title_full_unstemmed Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
title_sort Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
author Ozaki, Sérgio Tonzar Ristori
author_facet Ozaki, Sérgio Tonzar Ristori
author_role author
dc.contributor.none.fl_str_mv Fonseca, Fernando Josepetti
dc.contributor.author.fl_str_mv Ozaki, Sérgio Tonzar Ristori
dc.subject.por.fl_str_mv Artificial neural networks
Chemical sensors
Combustíveis veiculares
Falsificação
Falsification
Redes neurais artificiais
Sensores químicos
Vehicular fuel
topic Artificial neural networks
Chemical sensors
Combustíveis veiculares
Falsificação
Falsification
Redes neurais artificiais
Sensores químicos
Vehicular fuel
description A adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/
url http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256817784061952