Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/ |
Resumo: | A adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior. |
id |
USP_228c96472534ff5f1dc48a3d64d69740 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08122011-095611 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.Fuel adulteration detection using electrodepositated polymer sensors and artificial neural networks.Artificial neural networksChemical sensorsCombustíveis veicularesFalsificaçãoFalsificationRedes neurais artificiaisSensores químicosVehicular fuelA adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior.Fuel adulteration is a major concern in Brazil. The local governmental agency detects from 1 to 3% of problematic samples yearly, which is a lot considering Brazils market size. The myriad of adulteration possibilities is vast and it is very dynamic, thus array of sensors based on global selectivity concept seems to be more suitable methodology to detect problems in fuel. The global selectivity concept encompasses the cross-sensitivity of non-specific chemical sensors and the use of multivariated data analysis methods as a way to provide fingerprints for samples of different chemical composition. The chemical sensors can employ different types of sensoactive materials, whose electrical responses are dependent on the physicochemical characteristics of the media they get in contact with. Conducting polymers (CP) are per excellence suitable sensoactive materials, since their electrical conductivity is highly influenced by the environmental conditions and they can be easily processed in the thin film form by different techniques. In the present work films of poly(3-methylthiophene) (PMTh) and poly(3-hexylthiophene) (PHTh) are deposited by chronopotenciometry and chronoamperometry onto interdigitated microelectrodes and characterized through Impedance Spectroscopy. This data was analyzed with Multilayer perceptron neural networks and a very good performance is found in gasoline adulteration detection. A less great performance was also achieved in the investigation vehicular ethanol adulteration.Biblioteca Digitais de Teses e Dissertações da USPFonseca, Fernando JosepettiOzaki, Sérgio Tonzar Ristori2010-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-08122011-095611Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. Fuel adulteration detection using electrodepositated polymer sensors and artificial neural networks. |
title |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. |
spellingShingle |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. Ozaki, Sérgio Tonzar Ristori Artificial neural networks Chemical sensors Combustíveis veiculares Falsificação Falsification Redes neurais artificiais Sensores químicos Vehicular fuel |
title_short |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. |
title_full |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. |
title_fullStr |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. |
title_full_unstemmed |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. |
title_sort |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. |
author |
Ozaki, Sérgio Tonzar Ristori |
author_facet |
Ozaki, Sérgio Tonzar Ristori |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fonseca, Fernando Josepetti |
dc.contributor.author.fl_str_mv |
Ozaki, Sérgio Tonzar Ristori |
dc.subject.por.fl_str_mv |
Artificial neural networks Chemical sensors Combustíveis veiculares Falsificação Falsification Redes neurais artificiais Sensores químicos Vehicular fuel |
topic |
Artificial neural networks Chemical sensors Combustíveis veiculares Falsificação Falsification Redes neurais artificiais Sensores químicos Vehicular fuel |
description |
A adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256817784061952 |