Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02072018-103309/ |
Resumo: | Modelos não lineares como o Logístico e o Gompertz são amplamente usados para descrever vários processos biológicos por meio da curva de crescimento dada pela equação do modelo. O objetivo deste trabalho foi ajustar o modelo Chanter, assim como o Logístico e o Gompertz, utilizando um conjunto de dados do fruto do cacaueiro. O modelo Chanter é um híbrido entre o modelo Logístico e o modelo Gompertz cujos parâmetros podem ser interpretados similarmente. A comparação sobre a qualidade do ajuste entre os modelos foi feita utilizando as seguintes medidas estatísticas: o critério de informação de Akaike (AIC), o critério Peso de Akaike, o critério de informação de Bayes (BIC), o desvio padrão residual (DPR) e as medidas de não linearidade vício de Box e curvatura de Bates e Watts além de um estudo de simulação. Verificou-se que o modelo Chanter dentre os modelos estudados neste trabalho é o mais adequado para o ajuste dos dados do fruto do cacaueiro. |
id |
USP_237aa4de20f960bd900c6c9a40eba6e2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02072018-103309 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiroChanter Nonlinear Model: an application to cocoa fruits growth dataGrowth modelsMeasures of non-linearityMedidas de não linearidadeModelos de crescimentoNonlinear regressionRegressão não linearModelos não lineares como o Logístico e o Gompertz são amplamente usados para descrever vários processos biológicos por meio da curva de crescimento dada pela equação do modelo. O objetivo deste trabalho foi ajustar o modelo Chanter, assim como o Logístico e o Gompertz, utilizando um conjunto de dados do fruto do cacaueiro. O modelo Chanter é um híbrido entre o modelo Logístico e o modelo Gompertz cujos parâmetros podem ser interpretados similarmente. A comparação sobre a qualidade do ajuste entre os modelos foi feita utilizando as seguintes medidas estatísticas: o critério de informação de Akaike (AIC), o critério Peso de Akaike, o critério de informação de Bayes (BIC), o desvio padrão residual (DPR) e as medidas de não linearidade vício de Box e curvatura de Bates e Watts além de um estudo de simulação. Verificou-se que o modelo Chanter dentre os modelos estudados neste trabalho é o mais adequado para o ajuste dos dados do fruto do cacaueiro.Nonlinear models such as Logistic and Gompertz are widely used to describe several biological processes using a growth curve given by the equation of the model. The objective of this work was to adjust the Chanter model, as well as the Logistic and the Gompertz, using a data set of cocoa fruit. The Chanter model is a hybrid between the Logistic model and the Gompertz model whose parameters can be interpreted similarly. A comparison of the quality of fit between the models was made using the following statistical measures: the Akaike information criterion (AIC), the Akaike weight criterion, Bayes information criterion (BIC), residual standard deviation (RSD), and measures of non-linearity Box addiction and Bates and Watts curvature as well as a simulation study. It was verified that the Chanter model is the most suitable one among the studied models for modeling the cocoa data.Biblioteca Digitais de Teses e Dissertações da USPSavian, Taciana VillelaSilva, Pollyane Vieira da2018-02-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-02072018-103309/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-02072018-103309Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro Chanter Nonlinear Model: an application to cocoa fruits growth data |
title |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro |
spellingShingle |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro Silva, Pollyane Vieira da Growth models Measures of non-linearity Medidas de não linearidade Modelos de crescimento Nonlinear regression Regressão não linear |
title_short |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro |
title_full |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro |
title_fullStr |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro |
title_full_unstemmed |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro |
title_sort |
Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro |
author |
Silva, Pollyane Vieira da |
author_facet |
Silva, Pollyane Vieira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Savian, Taciana Villela |
dc.contributor.author.fl_str_mv |
Silva, Pollyane Vieira da |
dc.subject.por.fl_str_mv |
Growth models Measures of non-linearity Medidas de não linearidade Modelos de crescimento Nonlinear regression Regressão não linear |
topic |
Growth models Measures of non-linearity Medidas de não linearidade Modelos de crescimento Nonlinear regression Regressão não linear |
description |
Modelos não lineares como o Logístico e o Gompertz são amplamente usados para descrever vários processos biológicos por meio da curva de crescimento dada pela equação do modelo. O objetivo deste trabalho foi ajustar o modelo Chanter, assim como o Logístico e o Gompertz, utilizando um conjunto de dados do fruto do cacaueiro. O modelo Chanter é um híbrido entre o modelo Logístico e o modelo Gompertz cujos parâmetros podem ser interpretados similarmente. A comparação sobre a qualidade do ajuste entre os modelos foi feita utilizando as seguintes medidas estatísticas: o critério de informação de Akaike (AIC), o critério Peso de Akaike, o critério de informação de Bayes (BIC), o desvio padrão residual (DPR) e as medidas de não linearidade vício de Box e curvatura de Bates e Watts além de um estudo de simulação. Verificou-se que o modelo Chanter dentre os modelos estudados neste trabalho é o mais adequado para o ajuste dos dados do fruto do cacaueiro. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02072018-103309/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02072018-103309/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256609963638784 |