Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-01122022-120757/ |
Resumo: | Several flows of practical interest are viscoelastic fluids. Due to the industrial applicability of this type of flow, it is desirable to know how this flow propagates if disturbances appear in the system. Assuming that disturbances are introduced into the system, depending on the characteristics of the flow and the fluid, it may transition to a turbulent state, which can damage structures and even pipelines to rupture. The interaction between inertial, viscous and elastic forces strongly affects the hydrodynamics of viscoelastic fluids. The Linear Stability Theory (LST) technique investigates the propagation of disturbances in the flow. This technique solves an eigenvalue/ eigenvector problem, where the most unstable eigenvalue carries information regarding the stability of the flow studied (the amplification rate of the Tollmien-Schlichting waves). This eigenvalue problem is solved using the EIG function in MATLAB software. By directly solving this eigenvalue problem, the entire eigen spectrum is obtained, among them the eigenvalue that carries the stability information of the flow. The eigenfunctions associated with this eigenvalue are also obtained, allowing the analysis of the energy of the disturbances. There are many ways to analyze the stability of a flow. The most common is through the amplification rate of disturbances and the analysis of the energy of these disturbances. In the present research, the laminar-turbulent transition is studied by investigating the propagation of Tollmien-Schlichting waves. It adopted an incompressible viscoelastic fluid flow in a three-dimensional channel. The constitutive equations adopted were the UCM (Upper-Convected Maxwell), the Oldroyd-B, the Giesekus, and the linear Phan-Thien-Tanner (LPTT) models. The stability analysis is performed by analyzing the amplification rate of the disturbances and building a stability diagram. This diagram is called the neutral stability curves diagram. In the Oldroyd-B model increasing the solvent contribution in the mixture stabilizes the flow. For the UCM model, the increase in elasticity destabilizes the flow both for lower and higher frequencies. For the Giesekus model, the higher amount of polymer in the mixture stabilizes the flow for lower values of this models parameter and as the value of this parameter increases, the flow becomes more unstable. |
id |
USP_26037eaaf94f1225b2f6530754593bb6 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01122022-120757 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid FlowsTeoria de Estabilidade Linear Aplicada a Escoamentos Tridimensionais de Fluidos ViscoelásticosAnálise de estabilidadeEscoamento de fluidos viscoelásticosGiesekus modelLaminar-turbulent transitionLinear stability theoryLPTT modelModelo GiesekusModelo LPTTModelo Oldroyd-BModelo UCMOldroyd-B modelStability analysisTeoria de estabilidade linearTransição laminar-turbulentaUCM modelViscoelastic fluid flowSeveral flows of practical interest are viscoelastic fluids. Due to the industrial applicability of this type of flow, it is desirable to know how this flow propagates if disturbances appear in the system. Assuming that disturbances are introduced into the system, depending on the characteristics of the flow and the fluid, it may transition to a turbulent state, which can damage structures and even pipelines to rupture. The interaction between inertial, viscous and elastic forces strongly affects the hydrodynamics of viscoelastic fluids. The Linear Stability Theory (LST) technique investigates the propagation of disturbances in the flow. This technique solves an eigenvalue/ eigenvector problem, where the most unstable eigenvalue carries information regarding the stability of the flow studied (the amplification rate of the Tollmien-Schlichting waves). This eigenvalue problem is solved using the EIG function in MATLAB software. By directly solving this eigenvalue problem, the entire eigen spectrum is obtained, among them the eigenvalue that carries the stability information of the flow. The eigenfunctions associated with this eigenvalue are also obtained, allowing the analysis of the energy of the disturbances. There are many ways to analyze the stability of a flow. The most common is through the amplification rate of disturbances and the analysis of the energy of these disturbances. In the present research, the laminar-turbulent transition is studied by investigating the propagation of Tollmien-Schlichting waves. It adopted an incompressible viscoelastic fluid flow in a three-dimensional channel. The constitutive equations adopted were the UCM (Upper-Convected Maxwell), the Oldroyd-B, the Giesekus, and the linear Phan-Thien-Tanner (LPTT) models. The stability analysis is performed by analyzing the amplification rate of the disturbances and building a stability diagram. This diagram is called the neutral stability curves diagram. In the Oldroyd-B model increasing the solvent contribution in the mixture stabilizes the flow. For the UCM model, the increase in elasticity destabilizes the flow both for lower and higher frequencies. For the Giesekus model, the higher amount of polymer in the mixture stabilizes the flow for lower values of this models parameter and as the value of this parameter increases, the flow becomes more unstable.Vários escoamentos de interesse prático são de fluidos viscoelásticos. Devido à aplicabilidade industrial desse tipo de escoamento, é desejável saber como esse escoamento se propaga caso apareçam perturbações no sistema. Supondo que perturbações sejam introduzidas no sistema, dependendo das características do escoamento e do fluido, este pode sofrer uma transição para um estado turbulento, que podem gerar danos às estruturas e até o rompimento de tubulações. A hidrodinâmica dos fluidos viscoelásticos é fortemente afetada pela interação entre as forças inerciais, viscosas e elásticas. A técnica da Teoria da Estabilidade Linear (LST) investiga a propagação das perturbações no escoamento. Esta técnica consiste em resolver um problema de autovalor/autovetor, onde o autovalor mais instável carrega informações quanto a estabilidade do escoamento estudado (a taxa de amplificação das ondas de Tollmien-Schlichting). Este problema de autovalor é resolvido através da função EIG no software MATLAB. Ao resolver este problema de autovalor de forma direta, todo o autoespectro é obtido, entre eles o autovalor que carrega a informação de estabilidade do escoamento. As autofunções associadas a este autovalor também são obtidas, possibilitando a análise da energia das perturbações. Existem muitas formas de se analisar a estabilidade de um escoamento, ao qual as mais comuns são através da taxa de amplificação das perturbações e através da análise da energia dessas perturbações. Na presente pesquisa, a transição laminar-turbulenta é estudada investigando a propagação das ondas de Tollmien-Schlichting. Adotou-se um escoamento de fluido viscoelástico incompressível em um canal tridimensional. As equações constitutivas adotadas foram os modelos Upper-Convected Maxwell (UCM), Oldroyd-B, Giesekus e Linear Phan-Thien-Tanner (LPTT). A análise de estabilidade é realizada verificando a taxa de amplificação das perturbações e construindo um diagrama de estabilidade. Este diagrama é chamado de curva de estabilidade neutra. Para o fluido Oldroyd-B foi verificado que o aumento da contribuição do solvente na mistura estabiliza o escoamento. Para o modelo UCM foi verificado que o aumento da elasticidade desestabiliza o escoamento, tanto para baixas quanto para frequências mais elevadas. Para o modelo Giesekus foi verificado que maiores quantidade de polímero na mistura estabiliza o escoamento para baixos valores do parâmetro desse modelo, e que conforme o valor deste parâmetro aumenta, o escoamento se torna mais instávelBiblioteca Digitais de Teses e Dissertações da USPSouza, Leandro Franco deFurlan, Laison Junio da Silva2022-10-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-01122022-120757/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-12-01T14:13:59Zoai:teses.usp.br:tde-01122022-120757Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-01T14:13:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows Teoria de Estabilidade Linear Aplicada a Escoamentos Tridimensionais de Fluidos Viscoelásticos |
title |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows |
spellingShingle |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows Furlan, Laison Junio da Silva Análise de estabilidade Escoamento de fluidos viscoelásticos Giesekus model Laminar-turbulent transition Linear stability theory LPTT model Modelo Giesekus Modelo LPTT Modelo Oldroyd-B Modelo UCM Oldroyd-B model Stability analysis Teoria de estabilidade linear Transição laminar-turbulenta UCM model Viscoelastic fluid flow |
title_short |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows |
title_full |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows |
title_fullStr |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows |
title_full_unstemmed |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows |
title_sort |
Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid Flows |
author |
Furlan, Laison Junio da Silva |
author_facet |
Furlan, Laison Junio da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Leandro Franco de |
dc.contributor.author.fl_str_mv |
Furlan, Laison Junio da Silva |
dc.subject.por.fl_str_mv |
Análise de estabilidade Escoamento de fluidos viscoelásticos Giesekus model Laminar-turbulent transition Linear stability theory LPTT model Modelo Giesekus Modelo LPTT Modelo Oldroyd-B Modelo UCM Oldroyd-B model Stability analysis Teoria de estabilidade linear Transição laminar-turbulenta UCM model Viscoelastic fluid flow |
topic |
Análise de estabilidade Escoamento de fluidos viscoelásticos Giesekus model Laminar-turbulent transition Linear stability theory LPTT model Modelo Giesekus Modelo LPTT Modelo Oldroyd-B Modelo UCM Oldroyd-B model Stability analysis Teoria de estabilidade linear Transição laminar-turbulenta UCM model Viscoelastic fluid flow |
description |
Several flows of practical interest are viscoelastic fluids. Due to the industrial applicability of this type of flow, it is desirable to know how this flow propagates if disturbances appear in the system. Assuming that disturbances are introduced into the system, depending on the characteristics of the flow and the fluid, it may transition to a turbulent state, which can damage structures and even pipelines to rupture. The interaction between inertial, viscous and elastic forces strongly affects the hydrodynamics of viscoelastic fluids. The Linear Stability Theory (LST) technique investigates the propagation of disturbances in the flow. This technique solves an eigenvalue/ eigenvector problem, where the most unstable eigenvalue carries information regarding the stability of the flow studied (the amplification rate of the Tollmien-Schlichting waves). This eigenvalue problem is solved using the EIG function in MATLAB software. By directly solving this eigenvalue problem, the entire eigen spectrum is obtained, among them the eigenvalue that carries the stability information of the flow. The eigenfunctions associated with this eigenvalue are also obtained, allowing the analysis of the energy of the disturbances. There are many ways to analyze the stability of a flow. The most common is through the amplification rate of disturbances and the analysis of the energy of these disturbances. In the present research, the laminar-turbulent transition is studied by investigating the propagation of Tollmien-Schlichting waves. It adopted an incompressible viscoelastic fluid flow in a three-dimensional channel. The constitutive equations adopted were the UCM (Upper-Convected Maxwell), the Oldroyd-B, the Giesekus, and the linear Phan-Thien-Tanner (LPTT) models. The stability analysis is performed by analyzing the amplification rate of the disturbances and building a stability diagram. This diagram is called the neutral stability curves diagram. In the Oldroyd-B model increasing the solvent contribution in the mixture stabilizes the flow. For the UCM model, the increase in elasticity destabilizes the flow both for lower and higher frequencies. For the Giesekus model, the higher amount of polymer in the mixture stabilizes the flow for lower values of this models parameter and as the value of this parameter increases, the flow becomes more unstable. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-01122022-120757/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-01122022-120757/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256595032965120 |