Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23032020-094029/ |
Resumo: | A análise de dados de contagem ocupa um importante lugar dentro da estatística aplicada, uma vez que muitos problemas reais são expressos em termos de enumerações. Frequentemente, conjuntos de dados de contagem apresentam discrepâncias na frequência da observação zero, que pode ser alta ou baixa, e assim refere-se ao conjunto de dados como zero-inflacionado ou zero-deflacionado, respectivamente. Além disso, existem situações onde a observação zero não ocorre nos conjuntos de dados e, muitas vezes, modelos zero-truncados são inadequadamente considerados, visto que há uma probabilidade positiva (e não nula) para ocorrência de tal evento, embora este não tenha ocorrido. Esta dissertação tem como objetivo principal apresentar o procedimento de estimação dos parâmetros das distribuições zero-modificadas em situações em que a frequência da observação zero nos conjuntos de dados é nula e a probabilidade de ocorrência de tal valor é positiva (zero-deflacionada). A metodologia proposta considera a estimação de zeros faltantes no conjunto de dados formado apenas pelas observações positivas, tal que o conjunto de dados aumentados (adicionando-se os zeros estimados) pode ser explicado por uma distribuição tradicional. Métodos dos momentos e da máxima verossimilhança são considerados para o procedimento de estimação por meio do algoritmo de estimação-maximização. Estudos de simulação e com dados artificiais são utilizados para avaliação das propriedades dos estimadores e estimativas obtidas. Conjuntos de dados reais que apresentam diferentes casos de zeromodificação também são analisados. |
id |
USP_28f958e3d8f7f6887f5b70febc606f91 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23032020-094029 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantesZero-modified discrete distributions for modeling missing zeros count dataAlgoritmo EMDados zero-deflacionadosDistribuições zero-modificadasEM algorithmEstimador de máxima verossimilhançaMaximum likelihood estimatorMissing zerosZero-deflated dataZero-modified distributionsZeros faltantesA análise de dados de contagem ocupa um importante lugar dentro da estatística aplicada, uma vez que muitos problemas reais são expressos em termos de enumerações. Frequentemente, conjuntos de dados de contagem apresentam discrepâncias na frequência da observação zero, que pode ser alta ou baixa, e assim refere-se ao conjunto de dados como zero-inflacionado ou zero-deflacionado, respectivamente. Além disso, existem situações onde a observação zero não ocorre nos conjuntos de dados e, muitas vezes, modelos zero-truncados são inadequadamente considerados, visto que há uma probabilidade positiva (e não nula) para ocorrência de tal evento, embora este não tenha ocorrido. Esta dissertação tem como objetivo principal apresentar o procedimento de estimação dos parâmetros das distribuições zero-modificadas em situações em que a frequência da observação zero nos conjuntos de dados é nula e a probabilidade de ocorrência de tal valor é positiva (zero-deflacionada). A metodologia proposta considera a estimação de zeros faltantes no conjunto de dados formado apenas pelas observações positivas, tal que o conjunto de dados aumentados (adicionando-se os zeros estimados) pode ser explicado por uma distribuição tradicional. Métodos dos momentos e da máxima verossimilhança são considerados para o procedimento de estimação por meio do algoritmo de estimação-maximização. Estudos de simulação e com dados artificiais são utilizados para avaliação das propriedades dos estimadores e estimativas obtidas. Conjuntos de dados reais que apresentam diferentes casos de zeromodificação também são analisados.The analysis of count data takes an important place in applied statistics, since many real problems are expressed in terms of counts. Frequently, count data sets have discrepancies in the frequency of the zero observation, which may be high or low, and in these cases the set is referred as zeroinflated or zero-deflated, respectively. Besides, there are situations where the zero observation does not occur in the data set, and often zero-truncated models are inadequately considered, since there is a positive probability (and not a null one) for such event, although it has not occurred. The main aim of this dissertation is to present the procedure for parameter estimation of the zero-modified distributions in situations where the frequency of zero observation in the data set is zero and the occurrence probability of this same value is positive (zero-deflated). The proposed methodology considers the estimation of missing zeros in the data set consisting only of positive observations, such that the increased data set (with the estimated zeros included) can be explained by a traditional distribution. Moments and maximum likelihood methods are considered for the estimation procedure using the estimation-maximization algorithm. Simulation and artificial data studies are used to evaluate the properties of the estimators and estimates obtained. Real data sets with different cases of zero-modification are also analyzed.Biblioteca Digitais de Teses e Dissertações da USPConceição, Katiane SilvaMascarin, Isis Fernanda2020-01-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-23032020-094029/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-03-26T13:44:02Zoai:teses.usp.br:tde-23032020-094029Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-26T13:44:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes Zero-modified discrete distributions for modeling missing zeros count data |
title |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes |
spellingShingle |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes Mascarin, Isis Fernanda Algoritmo EM Dados zero-deflacionados Distribuições zero-modificadas EM algorithm Estimador de máxima verossimilhança Maximum likelihood estimator Missing zeros Zero-deflated data Zero-modified distributions Zeros faltantes |
title_short |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes |
title_full |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes |
title_fullStr |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes |
title_full_unstemmed |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes |
title_sort |
Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes |
author |
Mascarin, Isis Fernanda |
author_facet |
Mascarin, Isis Fernanda |
author_role |
author |
dc.contributor.none.fl_str_mv |
Conceição, Katiane Silva |
dc.contributor.author.fl_str_mv |
Mascarin, Isis Fernanda |
dc.subject.por.fl_str_mv |
Algoritmo EM Dados zero-deflacionados Distribuições zero-modificadas EM algorithm Estimador de máxima verossimilhança Maximum likelihood estimator Missing zeros Zero-deflated data Zero-modified distributions Zeros faltantes |
topic |
Algoritmo EM Dados zero-deflacionados Distribuições zero-modificadas EM algorithm Estimador de máxima verossimilhança Maximum likelihood estimator Missing zeros Zero-deflated data Zero-modified distributions Zeros faltantes |
description |
A análise de dados de contagem ocupa um importante lugar dentro da estatística aplicada, uma vez que muitos problemas reais são expressos em termos de enumerações. Frequentemente, conjuntos de dados de contagem apresentam discrepâncias na frequência da observação zero, que pode ser alta ou baixa, e assim refere-se ao conjunto de dados como zero-inflacionado ou zero-deflacionado, respectivamente. Além disso, existem situações onde a observação zero não ocorre nos conjuntos de dados e, muitas vezes, modelos zero-truncados são inadequadamente considerados, visto que há uma probabilidade positiva (e não nula) para ocorrência de tal evento, embora este não tenha ocorrido. Esta dissertação tem como objetivo principal apresentar o procedimento de estimação dos parâmetros das distribuições zero-modificadas em situações em que a frequência da observação zero nos conjuntos de dados é nula e a probabilidade de ocorrência de tal valor é positiva (zero-deflacionada). A metodologia proposta considera a estimação de zeros faltantes no conjunto de dados formado apenas pelas observações positivas, tal que o conjunto de dados aumentados (adicionando-se os zeros estimados) pode ser explicado por uma distribuição tradicional. Métodos dos momentos e da máxima verossimilhança são considerados para o procedimento de estimação por meio do algoritmo de estimação-maximização. Estudos de simulação e com dados artificiais são utilizados para avaliação das propriedades dos estimadores e estimativas obtidas. Conjuntos de dados reais que apresentam diferentes casos de zeromodificação também são analisados. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23032020-094029/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23032020-094029/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257295609659392 |