Estimação e predição nos modelos mistos não balanceados
Autor(a) principal: | |
---|---|
Data de Publicação: | 1992 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-120505/ |
Resumo: | Este trabalho apresenta um estudo sobre as funções e preditores lineares nos modelos de efeitos mistos, com estrutura de dados balanceados e desbalanceados. Propõe-se um método alternativo para a estimação dos preditores lineares, baseado nos multiplicadores de Lagrange os quais dependem linearmente da estimação dos efeitos fixos e aleatórios do modelo. A estimação desses efeitos dependem da estrutura da matriz associada de variâncias e covariâncias, por isto apresenta-se uma metodologia visando simplificar sua construção, assim como o cálculo de, sua inversa. Para a estimação dos componentes da variância, o modelo é escrito em termos das decomposições ortogonais lineares, através das quais se estabelece uma relação entre os sub-índices associados aos efeitos do modelo e os produtos de Kronecker das matrizes identidades de ordem s (Is) e, quadradas de elementos unitários de ordem s (Js), com a qual o cálculo dos estimadores de máxima verossimilhança dos componentes de variância associados fica sensivelmente simplificado. |
id |
USP_2c0f32f798323341759f4fffab504756 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20191220-120505 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estimação e predição nos modelos mistos não balanceadosEstimation and prediction with mixed unbalanced modelsCOMPONENTES DE VARIÂNCIAESTIMAÇÃOMODELOS LINEARES MISTOSPREDIÇÃOEste trabalho apresenta um estudo sobre as funções e preditores lineares nos modelos de efeitos mistos, com estrutura de dados balanceados e desbalanceados. Propõe-se um método alternativo para a estimação dos preditores lineares, baseado nos multiplicadores de Lagrange os quais dependem linearmente da estimação dos efeitos fixos e aleatórios do modelo. A estimação desses efeitos dependem da estrutura da matriz associada de variâncias e covariâncias, por isto apresenta-se uma metodologia visando simplificar sua construção, assim como o cálculo de, sua inversa. Para a estimação dos componentes da variância, o modelo é escrito em termos das decomposições ortogonais lineares, através das quais se estabelece uma relação entre os sub-índices associados aos efeitos do modelo e os produtos de Kronecker das matrizes identidades de ordem s (Is) e, quadradas de elementos unitários de ordem s (Js), com a qual o cálculo dos estimadores de máxima verossimilhança dos componentes de variância associados fica sensivelmente simplificado.This work makes a study about the linear functions and predictors in models with mixed effects with balanced and unbalanced datums. Here is presented an alternative method for the estimation of the linear predictors based on the Lagrange's multiplicators, which depend linearly on the estimation of the fixed and aleatory effects of the model. The estimation of these effects depend on the structure of the associate variances and covariances matrix; that's why, a methodology is presented to facilitate its construction and the calculation of its inverse. For the estimation of the variance's components, the model is written in terms of linear orthogonal decompositions, that allow to stablish a relationship between the subindex associated with the effects of the model an the Kronecker products of the identities matrices of order s (Is) and the square matrices of order s (Js), notation this, that suppies the calculation of the maximum likelihood estimators of the associate variance's components.Biblioteca Digitais de Teses e Dissertações da USPIemma, Antonio FranciscoLopez Perez, Luis Alberto1992-12-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-120505/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-12-21T00:44:02Zoai:teses.usp.br:tde-20191220-120505Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-12-21T00:44:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estimação e predição nos modelos mistos não balanceados Estimation and prediction with mixed unbalanced models |
title |
Estimação e predição nos modelos mistos não balanceados |
spellingShingle |
Estimação e predição nos modelos mistos não balanceados Lopez Perez, Luis Alberto COMPONENTES DE VARIÂNCIA ESTIMAÇÃO MODELOS LINEARES MISTOS PREDIÇÃO |
title_short |
Estimação e predição nos modelos mistos não balanceados |
title_full |
Estimação e predição nos modelos mistos não balanceados |
title_fullStr |
Estimação e predição nos modelos mistos não balanceados |
title_full_unstemmed |
Estimação e predição nos modelos mistos não balanceados |
title_sort |
Estimação e predição nos modelos mistos não balanceados |
author |
Lopez Perez, Luis Alberto |
author_facet |
Lopez Perez, Luis Alberto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Iemma, Antonio Francisco |
dc.contributor.author.fl_str_mv |
Lopez Perez, Luis Alberto |
dc.subject.por.fl_str_mv |
COMPONENTES DE VARIÂNCIA ESTIMAÇÃO MODELOS LINEARES MISTOS PREDIÇÃO |
topic |
COMPONENTES DE VARIÂNCIA ESTIMAÇÃO MODELOS LINEARES MISTOS PREDIÇÃO |
description |
Este trabalho apresenta um estudo sobre as funções e preditores lineares nos modelos de efeitos mistos, com estrutura de dados balanceados e desbalanceados. Propõe-se um método alternativo para a estimação dos preditores lineares, baseado nos multiplicadores de Lagrange os quais dependem linearmente da estimação dos efeitos fixos e aleatórios do modelo. A estimação desses efeitos dependem da estrutura da matriz associada de variâncias e covariâncias, por isto apresenta-se uma metodologia visando simplificar sua construção, assim como o cálculo de, sua inversa. Para a estimação dos componentes da variância, o modelo é escrito em termos das decomposições ortogonais lineares, através das quais se estabelece uma relação entre os sub-índices associados aos efeitos do modelo e os produtos de Kronecker das matrizes identidades de ordem s (Is) e, quadradas de elementos unitários de ordem s (Js), com a qual o cálculo dos estimadores de máxima verossimilhança dos componentes de variância associados fica sensivelmente simplificado. |
publishDate |
1992 |
dc.date.none.fl_str_mv |
1992-12-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-120505/ |
url |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-120505/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257198976040960 |