A lógica dos feixes sobre quantais right-sided e idempotentes

Detalhes bibliográficos
Autor(a) principal: Coniglio, Marcelo Esteban
Data de Publicação: 1997
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/
Resumo: Neste trabalho, apresentamos uma lógica de primeira ordem com tipos para as categorias Psh(Q) e Sh(Q) dos prefeixes e feixes sobre quantais (right-sided e idempotentes). São estudadas as propriedades das operações lógicas entre sub-objetos em Psh(Q) com relação ao cálculo da imagem inversa por morfismos (interpretando a substituição de uma variável por um termo numa fórmula), estabelecendo condições suficientes, expressáveis na linguagem de primeira ordem, que garantem a preservação das operações. Em particular, é discutida a noção de extensão de sub-prefeixes -construídos a partir de sub-prefeixes elementares- por novos prefeixes, inerente ao processo de combinar fórmulas com variáveis de tipos diferentes. Portanto, as regras de lógica possuem cláusulas que prescrevem as condições de extensão, o que garante a corretude da lógica. São analizadas propriedades de primeira ordem das relações binárias em Psh(Q), assim algumas estruturas algébricas, tais como anéis, módulos e corpos. É provado na lógica um teorema de I. Kaplansky, que diz serem livre os módulos projetivos finitamente gerados sobre um anel local
id USP_2c4b13cc241e33a570b22ae5b55e3b10
oai_identifier_str oai:teses.usp.br:tde-20210729-014636
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling A lógica dos feixes sobre quantais right-sided e idempotentesnot availableLógica MatemáticaNeste trabalho, apresentamos uma lógica de primeira ordem com tipos para as categorias Psh(Q) e Sh(Q) dos prefeixes e feixes sobre quantais (right-sided e idempotentes). São estudadas as propriedades das operações lógicas entre sub-objetos em Psh(Q) com relação ao cálculo da imagem inversa por morfismos (interpretando a substituição de uma variável por um termo numa fórmula), estabelecendo condições suficientes, expressáveis na linguagem de primeira ordem, que garantem a preservação das operações. Em particular, é discutida a noção de extensão de sub-prefeixes -construídos a partir de sub-prefeixes elementares- por novos prefeixes, inerente ao processo de combinar fórmulas com variáveis de tipos diferentes. Portanto, as regras de lógica possuem cláusulas que prescrevem as condições de extensão, o que garante a corretude da lógica. São analizadas propriedades de primeira ordem das relações binárias em Psh(Q), assim algumas estruturas algébricas, tais como anéis, módulos e corpos. É provado na lógica um teorema de I. Kaplansky, que diz serem livre os módulos projetivos finitamente gerados sobre um anel localnot availableBiblioteca Digitais de Teses e Dissertações da USPMiraglia Neto, FranciscoConiglio, Marcelo Esteban1997-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T18:59:08Zoai:teses.usp.br:tde-20210729-014636Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T18:59:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A lógica dos feixes sobre quantais right-sided e idempotentes
not available
title A lógica dos feixes sobre quantais right-sided e idempotentes
spellingShingle A lógica dos feixes sobre quantais right-sided e idempotentes
Coniglio, Marcelo Esteban
Lógica Matemática
title_short A lógica dos feixes sobre quantais right-sided e idempotentes
title_full A lógica dos feixes sobre quantais right-sided e idempotentes
title_fullStr A lógica dos feixes sobre quantais right-sided e idempotentes
title_full_unstemmed A lógica dos feixes sobre quantais right-sided e idempotentes
title_sort A lógica dos feixes sobre quantais right-sided e idempotentes
author Coniglio, Marcelo Esteban
author_facet Coniglio, Marcelo Esteban
author_role author
dc.contributor.none.fl_str_mv Miraglia Neto, Francisco
dc.contributor.author.fl_str_mv Coniglio, Marcelo Esteban
dc.subject.por.fl_str_mv Lógica Matemática
topic Lógica Matemática
description Neste trabalho, apresentamos uma lógica de primeira ordem com tipos para as categorias Psh(Q) e Sh(Q) dos prefeixes e feixes sobre quantais (right-sided e idempotentes). São estudadas as propriedades das operações lógicas entre sub-objetos em Psh(Q) com relação ao cálculo da imagem inversa por morfismos (interpretando a substituição de uma variável por um termo numa fórmula), estabelecendo condições suficientes, expressáveis na linguagem de primeira ordem, que garantem a preservação das operações. Em particular, é discutida a noção de extensão de sub-prefeixes -construídos a partir de sub-prefeixes elementares- por novos prefeixes, inerente ao processo de combinar fórmulas com variáveis de tipos diferentes. Portanto, as regras de lógica possuem cláusulas que prescrevem as condições de extensão, o que garante a corretude da lógica. São analizadas propriedades de primeira ordem das relações binárias em Psh(Q), assim algumas estruturas algébricas, tais como anéis, módulos e corpos. É provado na lógica um teorema de I. Kaplansky, que diz serem livre os módulos projetivos finitamente gerados sobre um anel local
publishDate 1997
dc.date.none.fl_str_mv 1997-08-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/
url https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257207645667328