A lógica dos feixes sobre quantais right-sided e idempotentes
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/ |
Resumo: | Neste trabalho, apresentamos uma lógica de primeira ordem com tipos para as categorias Psh(Q) e Sh(Q) dos prefeixes e feixes sobre quantais (right-sided e idempotentes). São estudadas as propriedades das operações lógicas entre sub-objetos em Psh(Q) com relação ao cálculo da imagem inversa por morfismos (interpretando a substituição de uma variável por um termo numa fórmula), estabelecendo condições suficientes, expressáveis na linguagem de primeira ordem, que garantem a preservação das operações. Em particular, é discutida a noção de extensão de sub-prefeixes -construídos a partir de sub-prefeixes elementares- por novos prefeixes, inerente ao processo de combinar fórmulas com variáveis de tipos diferentes. Portanto, as regras de lógica possuem cláusulas que prescrevem as condições de extensão, o que garante a corretude da lógica. São analizadas propriedades de primeira ordem das relações binárias em Psh(Q), assim algumas estruturas algébricas, tais como anéis, módulos e corpos. É provado na lógica um teorema de I. Kaplansky, que diz serem livre os módulos projetivos finitamente gerados sobre um anel local |
id |
USP_2c4b13cc241e33a570b22ae5b55e3b10 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-014636 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A lógica dos feixes sobre quantais right-sided e idempotentesnot availableLógica MatemáticaNeste trabalho, apresentamos uma lógica de primeira ordem com tipos para as categorias Psh(Q) e Sh(Q) dos prefeixes e feixes sobre quantais (right-sided e idempotentes). São estudadas as propriedades das operações lógicas entre sub-objetos em Psh(Q) com relação ao cálculo da imagem inversa por morfismos (interpretando a substituição de uma variável por um termo numa fórmula), estabelecendo condições suficientes, expressáveis na linguagem de primeira ordem, que garantem a preservação das operações. Em particular, é discutida a noção de extensão de sub-prefeixes -construídos a partir de sub-prefeixes elementares- por novos prefeixes, inerente ao processo de combinar fórmulas com variáveis de tipos diferentes. Portanto, as regras de lógica possuem cláusulas que prescrevem as condições de extensão, o que garante a corretude da lógica. São analizadas propriedades de primeira ordem das relações binárias em Psh(Q), assim algumas estruturas algébricas, tais como anéis, módulos e corpos. É provado na lógica um teorema de I. Kaplansky, que diz serem livre os módulos projetivos finitamente gerados sobre um anel localnot availableBiblioteca Digitais de Teses e Dissertações da USPMiraglia Neto, FranciscoConiglio, Marcelo Esteban1997-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T18:59:08Zoai:teses.usp.br:tde-20210729-014636Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T18:59:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A lógica dos feixes sobre quantais right-sided e idempotentes not available |
title |
A lógica dos feixes sobre quantais right-sided e idempotentes |
spellingShingle |
A lógica dos feixes sobre quantais right-sided e idempotentes Coniglio, Marcelo Esteban Lógica Matemática |
title_short |
A lógica dos feixes sobre quantais right-sided e idempotentes |
title_full |
A lógica dos feixes sobre quantais right-sided e idempotentes |
title_fullStr |
A lógica dos feixes sobre quantais right-sided e idempotentes |
title_full_unstemmed |
A lógica dos feixes sobre quantais right-sided e idempotentes |
title_sort |
A lógica dos feixes sobre quantais right-sided e idempotentes |
author |
Coniglio, Marcelo Esteban |
author_facet |
Coniglio, Marcelo Esteban |
author_role |
author |
dc.contributor.none.fl_str_mv |
Miraglia Neto, Francisco |
dc.contributor.author.fl_str_mv |
Coniglio, Marcelo Esteban |
dc.subject.por.fl_str_mv |
Lógica Matemática |
topic |
Lógica Matemática |
description |
Neste trabalho, apresentamos uma lógica de primeira ordem com tipos para as categorias Psh(Q) e Sh(Q) dos prefeixes e feixes sobre quantais (right-sided e idempotentes). São estudadas as propriedades das operações lógicas entre sub-objetos em Psh(Q) com relação ao cálculo da imagem inversa por morfismos (interpretando a substituição de uma variável por um termo numa fórmula), estabelecendo condições suficientes, expressáveis na linguagem de primeira ordem, que garantem a preservação das operações. Em particular, é discutida a noção de extensão de sub-prefeixes -construídos a partir de sub-prefeixes elementares- por novos prefeixes, inerente ao processo de combinar fórmulas com variáveis de tipos diferentes. Portanto, as regras de lógica possuem cláusulas que prescrevem as condições de extensão, o que garante a corretude da lógica. São analizadas propriedades de primeira ordem das relações binárias em Psh(Q), assim algumas estruturas algébricas, tais como anéis, módulos e corpos. É provado na lógica um teorema de I. Kaplansky, que diz serem livre os módulos projetivos finitamente gerados sobre um anel local |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997-08-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-014636/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257207645667328 |