Aspectos temporais na recomendação de conteúdo em microblogs

Detalhes bibliográficos
Autor(a) principal: Casimiro, Caio Ramos
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-13082015-150757/
Resumo: Este documento apresenta um estudo que avalia o uso de informação temporal na tarefa de recomendação de tweets no twitter. Foram explorados dois aspectos temporais: a vida útil de tópico de informação e a sua versão personalizada para cada usuário. A aplicação destes aspectos temporais foi avaliada utilizando-se três sistemas de recomendação implementados. Também avaliamos dois modelos de tópicos utilizados para representar tweets: o modelo bag of words e um modelo de tópicos latentes extraídos por LDA (Latent Dirichlet Allocation). Além disso, avaliamos o uso de máquinas de vetor de suporte para estimar o perfil de interesses de usuário, comparando esta abordagem com uma outra mais simples. Os experimentos foram executados utilizando-se um conjunto de dados com 414 milhões de tweets publicados por 321 mil usuários. Os resultados apresentados demonstram que o uso de vida útil de tópico na tarefa de recomendação melhora a qualidade das recomendações, e o uso da versão personalizada desta informação melhorou ainda mais a qualidade destas
id USP_3415cd17b1e837cb8bdb1ea57801e6f4
oai_identifier_str oai:teses.usp.br:tde-13082015-150757
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Aspectos temporais na recomendação de conteúdo em microblogsTemporal aspects on content recommendation in microblogsAspectos temporaisContent recommendationMicroblogsMicroblogsRecomendação de conteúdoTemporal aspectsTwitterTwitterEste documento apresenta um estudo que avalia o uso de informação temporal na tarefa de recomendação de tweets no twitter. Foram explorados dois aspectos temporais: a vida útil de tópico de informação e a sua versão personalizada para cada usuário. A aplicação destes aspectos temporais foi avaliada utilizando-se três sistemas de recomendação implementados. Também avaliamos dois modelos de tópicos utilizados para representar tweets: o modelo bag of words e um modelo de tópicos latentes extraídos por LDA (Latent Dirichlet Allocation). Além disso, avaliamos o uso de máquinas de vetor de suporte para estimar o perfil de interesses de usuário, comparando esta abordagem com uma outra mais simples. Os experimentos foram executados utilizando-se um conjunto de dados com 414 milhões de tweets publicados por 321 mil usuários. Os resultados apresentados demonstram que o uso de vida útil de tópico na tarefa de recomendação melhora a qualidade das recomendações, e o uso da versão personalizada desta informação melhorou ainda mais a qualidade destasThis document presents a study that evaluates the use of temporal information in the task of recommending tweets on Twitter. Two temporal aspects have been analysed: the lifespan of information topic and its personalized version for each user. The application of such temporal aspects has been evaluated using three recommendation systems implemented in this work. We also evaluated two topic models considered to describe tweets: a bag of words model and a model of latent topics extracted using LDA (Latent Dirichlet Allocation). Furthermore, we evaluated the use of SVM (Support Vector Machines) to estimate the user profile, comparing this approach with a simpler one. The experiments have been executed using a dataset with 414 millions of tweets published by 321 thousands of users. The results show that the use of topic lifespan information increases the quality of recommendation, and the personalized version of this information increases the quality even moreBiblioteca Digitais de Teses e Dissertações da USPParaboni, IvandréCasimiro, Caio Ramos2015-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-13082015-150757/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-13082015-150757Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Aspectos temporais na recomendação de conteúdo em microblogs
Temporal aspects on content recommendation in microblogs
title Aspectos temporais na recomendação de conteúdo em microblogs
spellingShingle Aspectos temporais na recomendação de conteúdo em microblogs
Casimiro, Caio Ramos
Aspectos temporais
Content recommendation
Microblogs
Microblogs
Recomendação de conteúdo
Temporal aspects
Twitter
Twitter
title_short Aspectos temporais na recomendação de conteúdo em microblogs
title_full Aspectos temporais na recomendação de conteúdo em microblogs
title_fullStr Aspectos temporais na recomendação de conteúdo em microblogs
title_full_unstemmed Aspectos temporais na recomendação de conteúdo em microblogs
title_sort Aspectos temporais na recomendação de conteúdo em microblogs
author Casimiro, Caio Ramos
author_facet Casimiro, Caio Ramos
author_role author
dc.contributor.none.fl_str_mv Paraboni, Ivandré
dc.contributor.author.fl_str_mv Casimiro, Caio Ramos
dc.subject.por.fl_str_mv Aspectos temporais
Content recommendation
Microblogs
Microblogs
Recomendação de conteúdo
Temporal aspects
Twitter
Twitter
topic Aspectos temporais
Content recommendation
Microblogs
Microblogs
Recomendação de conteúdo
Temporal aspects
Twitter
Twitter
description Este documento apresenta um estudo que avalia o uso de informação temporal na tarefa de recomendação de tweets no twitter. Foram explorados dois aspectos temporais: a vida útil de tópico de informação e a sua versão personalizada para cada usuário. A aplicação destes aspectos temporais foi avaliada utilizando-se três sistemas de recomendação implementados. Também avaliamos dois modelos de tópicos utilizados para representar tweets: o modelo bag of words e um modelo de tópicos latentes extraídos por LDA (Latent Dirichlet Allocation). Além disso, avaliamos o uso de máquinas de vetor de suporte para estimar o perfil de interesses de usuário, comparando esta abordagem com uma outra mais simples. Os experimentos foram executados utilizando-se um conjunto de dados com 414 milhões de tweets publicados por 321 mil usuários. Os resultados apresentados demonstram que o uso de vida útil de tópico na tarefa de recomendação melhora a qualidade das recomendações, e o uso da versão personalizada desta informação melhorou ainda mais a qualidade destas
publishDate 2015
dc.date.none.fl_str_mv 2015-06-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/100/100131/tde-13082015-150757/
url http://www.teses.usp.br/teses/disponiveis/100/100131/tde-13082015-150757/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256941753008128