Nonlinear adaptive algorithms with tensor rank decompositions.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/ |
Resumo: | In this work, we develop a theory of adaptive filters whose filtering structure and the corresponding input present some multilinear and/or tensorial relation in their coefficients. Such structures are highly nonlinear, which turns the analysis quite challenging. Nevertheless, we develop techniques that allow for studying a wide class of these algorithms. The work adopts a generic formulation using a new concept, the multitensors, which are, simply put, a sum of tensors of different orders. The system under study has its output defined as the contraction of the input multitensor and the parameter multitensor. Different restrictions imposed on the input and/or on the parameter multitensors result in a myriad of different models and corresponding adaptive algorithms that are analyzed in details, unveiling computational complexity reductions (expressive in some cases), convergence performance and stability, steady-state error, efficient implementation techniques and competitive advantages. Several important works from the literature are generalized and unified under our multitensorial formulation, achieving a wide range of applications. This study presents a review of concepts from multilinear algebra and tensors, which allows us to define all the classes of systems that will be considered here. In the sequel, such systems are studied in the context of Estimation Theory. Some exact gradientdescent methods are developed to find solutions for the nonlinear estimation problems previously defined for all classes covered in this work. They are: the gradient-descent method, the Newtons method and a normalized version of the gradient-descent method. After that, classical approximations for the signals statistics leads to the stochastic gradient algorithms counterpartsthe adaptive filters. In particular, the algorithms are: the least-mean squares (LMS), the SLMS (Stabilized LMS), the normalized LMS (NLMS), the affine projections (APA), the Ture-LMS (An LMS variant with multiple input data) and the stabilized True-LMS. Theoretical analysis for the mean-square error (MSE) are obtained and compared to simulations. Comparisons to several well known algorithms from the literature are also presented, showing advantages for the methods developed here. A certain fluency in linear and abstract algebras are assumed, although the main concepts are introduced in the text and in the appendices. |
id |
USP_342b8c02c2e0adb52d76b6763f7494eb |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21032022-113440 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Nonlinear adaptive algorithms with tensor rank decompositions.Algoritmos adaptativos não-lineares com decomposições de posto tensorialAdaptive filteringÁlgebra multilinearEstimação não linearLow complexityNonlinear processingProcessamento de sinais adaptativosSistemas não linearesTensoresTensorsVolterra seriesIn this work, we develop a theory of adaptive filters whose filtering structure and the corresponding input present some multilinear and/or tensorial relation in their coefficients. Such structures are highly nonlinear, which turns the analysis quite challenging. Nevertheless, we develop techniques that allow for studying a wide class of these algorithms. The work adopts a generic formulation using a new concept, the multitensors, which are, simply put, a sum of tensors of different orders. The system under study has its output defined as the contraction of the input multitensor and the parameter multitensor. Different restrictions imposed on the input and/or on the parameter multitensors result in a myriad of different models and corresponding adaptive algorithms that are analyzed in details, unveiling computational complexity reductions (expressive in some cases), convergence performance and stability, steady-state error, efficient implementation techniques and competitive advantages. Several important works from the literature are generalized and unified under our multitensorial formulation, achieving a wide range of applications. This study presents a review of concepts from multilinear algebra and tensors, which allows us to define all the classes of systems that will be considered here. In the sequel, such systems are studied in the context of Estimation Theory. Some exact gradientdescent methods are developed to find solutions for the nonlinear estimation problems previously defined for all classes covered in this work. They are: the gradient-descent method, the Newtons method and a normalized version of the gradient-descent method. After that, classical approximations for the signals statistics leads to the stochastic gradient algorithms counterpartsthe adaptive filters. In particular, the algorithms are: the least-mean squares (LMS), the SLMS (Stabilized LMS), the normalized LMS (NLMS), the affine projections (APA), the Ture-LMS (An LMS variant with multiple input data) and the stabilized True-LMS. Theoretical analysis for the mean-square error (MSE) are obtained and compared to simulations. Comparisons to several well known algorithms from the literature are also presented, showing advantages for the methods developed here. A certain fluency in linear and abstract algebras are assumed, although the main concepts are introduced in the text and in the appendices.Neste trabalho, n´os desenvolvemos uma teoria de filtros adaptativos cuja estrutura de filtragem e a entrada correspondente possuem alguma relação multilinear ou tensorial em seus coeficientes. Essas estruturas são altamente não-lineares, o que faz com que sua análise seja bastante desafiadora. Apesar disso, n´os desenvolvemos técnicas que nos permitem estudar uma ampla classe de tais algoritmos. O Trabalho emprega uma formulação geral usando um novo conceito, o de multitensores, que é uma soma de tensores de diversas ordens. A saída do sistema genérico sob estudo é definida como uma contração do multitensor de entrada com o multitensor que captura os parâmetros da estrutura de filtragem. Diferentes restrições impostas nas estruturas da entrada e/ou dos parâmetros resultam em uma miríade de modelos e algoritmos adaptativos diferentes que são analisados em detalhes, revelando reduções de complexidade computacional (Expressivas em alguns casos), desempenho em convergência e estabilidade, erro em regime, técnicas eficientes de implementação e vantagens competitivas. Vários trabalhos importantes da literatura são generalizados e unificados sob nossa formulação multitensorial, alcançando uma rica gama de aplicações. Esse estudo passa por uma revisão de conceitos provenientes de Álgebra Multilinear e tensores, o que nos permite definir todas as classes de sistemas que serão estudados. Em seguida, esses sistemas são estudados no contexto de Teoria da Estimação. Nos então desenvolvemos alguns métodos do gradiente exato para encontrar soluções dos problemas de estimação não-linear anteriormente definidos para todas as classes abordadas no trabalho. São eles: o método da descida mais íngrime puro, o método de Newton, e uma versão normalizada do algoritmo do gradiente. Depois, introduzimos aproximações clássicas nos parâmetros estatísticos dos sinais envolvidos a fim de obtermos algoritmos do gradiente estocástico filtros adaptativos. Em particular, o Least-Mean Square (LMS), o SLMS (Stabilized LMS), o LMS Normalizado (NLMS), o APA (Affine projections algorithm), o True-LMS (variante do LMS com m´ultiplos dados), o True-LMS estabilizado. Os resultados da an´alise teorica do MSE sao comparados com simulações. Comparações com os vários algoritmos não-lineares da literatura são também apresentadas, mostrando as vantagens dos métodos desenvolvidos. O trabalho assume uma certa fluência em álgebra linear e abstrata, embora todos os conceitos necessários sejam introduzidos ao longo do texto e nos apêndices.Biblioteca Digitais de Teses e Dissertações da USPLopes, Cássio GuimarãesPinheiro, Felipe Chaud2021-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-03-21T17:33:46Zoai:teses.usp.br:tde-21032022-113440Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-03-21T17:33:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Nonlinear adaptive algorithms with tensor rank decompositions. Algoritmos adaptativos não-lineares com decomposições de posto tensorial |
title |
Nonlinear adaptive algorithms with tensor rank decompositions. |
spellingShingle |
Nonlinear adaptive algorithms with tensor rank decompositions. Pinheiro, Felipe Chaud Adaptive filtering Álgebra multilinear Estimação não linear Low complexity Nonlinear processing Processamento de sinais adaptativos Sistemas não lineares Tensores Tensors Volterra series |
title_short |
Nonlinear adaptive algorithms with tensor rank decompositions. |
title_full |
Nonlinear adaptive algorithms with tensor rank decompositions. |
title_fullStr |
Nonlinear adaptive algorithms with tensor rank decompositions. |
title_full_unstemmed |
Nonlinear adaptive algorithms with tensor rank decompositions. |
title_sort |
Nonlinear adaptive algorithms with tensor rank decompositions. |
author |
Pinheiro, Felipe Chaud |
author_facet |
Pinheiro, Felipe Chaud |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lopes, Cássio Guimarães |
dc.contributor.author.fl_str_mv |
Pinheiro, Felipe Chaud |
dc.subject.por.fl_str_mv |
Adaptive filtering Álgebra multilinear Estimação não linear Low complexity Nonlinear processing Processamento de sinais adaptativos Sistemas não lineares Tensores Tensors Volterra series |
topic |
Adaptive filtering Álgebra multilinear Estimação não linear Low complexity Nonlinear processing Processamento de sinais adaptativos Sistemas não lineares Tensores Tensors Volterra series |
description |
In this work, we develop a theory of adaptive filters whose filtering structure and the corresponding input present some multilinear and/or tensorial relation in their coefficients. Such structures are highly nonlinear, which turns the analysis quite challenging. Nevertheless, we develop techniques that allow for studying a wide class of these algorithms. The work adopts a generic formulation using a new concept, the multitensors, which are, simply put, a sum of tensors of different orders. The system under study has its output defined as the contraction of the input multitensor and the parameter multitensor. Different restrictions imposed on the input and/or on the parameter multitensors result in a myriad of different models and corresponding adaptive algorithms that are analyzed in details, unveiling computational complexity reductions (expressive in some cases), convergence performance and stability, steady-state error, efficient implementation techniques and competitive advantages. Several important works from the literature are generalized and unified under our multitensorial formulation, achieving a wide range of applications. This study presents a review of concepts from multilinear algebra and tensors, which allows us to define all the classes of systems that will be considered here. In the sequel, such systems are studied in the context of Estimation Theory. Some exact gradientdescent methods are developed to find solutions for the nonlinear estimation problems previously defined for all classes covered in this work. They are: the gradient-descent method, the Newtons method and a normalized version of the gradient-descent method. After that, classical approximations for the signals statistics leads to the stochastic gradient algorithms counterpartsthe adaptive filters. In particular, the algorithms are: the least-mean squares (LMS), the SLMS (Stabilized LMS), the normalized LMS (NLMS), the affine projections (APA), the Ture-LMS (An LMS variant with multiple input data) and the stabilized True-LMS. Theoretical analysis for the mean-square error (MSE) are obtained and compared to simulations. Comparisons to several well known algorithms from the literature are also presented, showing advantages for the methods developed here. A certain fluency in linear and abstract algebras are assumed, although the main concepts are introduced in the text and in the appendices. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257237338193920 |