Nonlinear adaptive algorithms with tensor rank decompositions.

Detalhes bibliográficos
Autor(a) principal: Pinheiro, Felipe Chaud
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/
Resumo: In this work, we develop a theory of adaptive filters whose filtering structure and the corresponding input present some multilinear and/or tensorial relation in their coefficients. Such structures are highly nonlinear, which turns the analysis quite challenging. Nevertheless, we develop techniques that allow for studying a wide class of these algorithms. The work adopts a generic formulation using a new concept, the multitensors, which are, simply put, a sum of tensors of different orders. The system under study has its output defined as the contraction of the input multitensor and the parameter multitensor. Different restrictions imposed on the input and/or on the parameter multitensors result in a myriad of different models and corresponding adaptive algorithms that are analyzed in details, unveiling computational complexity reductions (expressive in some cases), convergence performance and stability, steady-state error, efficient implementation techniques and competitive advantages. Several important works from the literature are generalized and unified under our multitensorial formulation, achieving a wide range of applications. This study presents a review of concepts from multilinear algebra and tensors, which allows us to define all the classes of systems that will be considered here. In the sequel, such systems are studied in the context of Estimation Theory. Some exact gradientdescent methods are developed to find solutions for the nonlinear estimation problems previously defined for all classes covered in this work. They are: the gradient-descent method, the Newtons method and a normalized version of the gradient-descent method. After that, classical approximations for the signals statistics leads to the stochastic gradient algorithms counterpartsthe adaptive filters. In particular, the algorithms are: the least-mean squares (LMS), the SLMS (Stabilized LMS), the normalized LMS (NLMS), the affine projections (APA), the Ture-LMS (An LMS variant with multiple input data) and the stabilized True-LMS. Theoretical analysis for the mean-square error (MSE) are obtained and compared to simulations. Comparisons to several well known algorithms from the literature are also presented, showing advantages for the methods developed here. A certain fluency in linear and abstract algebras are assumed, although the main concepts are introduced in the text and in the appendices.
id USP_342b8c02c2e0adb52d76b6763f7494eb
oai_identifier_str oai:teses.usp.br:tde-21032022-113440
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Nonlinear adaptive algorithms with tensor rank decompositions.Algoritmos adaptativos não-lineares com decomposições de posto tensorialAdaptive filteringÁlgebra multilinearEstimação não linearLow complexityNonlinear processingProcessamento de sinais adaptativosSistemas não linearesTensoresTensorsVolterra seriesIn this work, we develop a theory of adaptive filters whose filtering structure and the corresponding input present some multilinear and/or tensorial relation in their coefficients. Such structures are highly nonlinear, which turns the analysis quite challenging. Nevertheless, we develop techniques that allow for studying a wide class of these algorithms. The work adopts a generic formulation using a new concept, the multitensors, which are, simply put, a sum of tensors of different orders. The system under study has its output defined as the contraction of the input multitensor and the parameter multitensor. Different restrictions imposed on the input and/or on the parameter multitensors result in a myriad of different models and corresponding adaptive algorithms that are analyzed in details, unveiling computational complexity reductions (expressive in some cases), convergence performance and stability, steady-state error, efficient implementation techniques and competitive advantages. Several important works from the literature are generalized and unified under our multitensorial formulation, achieving a wide range of applications. This study presents a review of concepts from multilinear algebra and tensors, which allows us to define all the classes of systems that will be considered here. In the sequel, such systems are studied in the context of Estimation Theory. Some exact gradientdescent methods are developed to find solutions for the nonlinear estimation problems previously defined for all classes covered in this work. They are: the gradient-descent method, the Newtons method and a normalized version of the gradient-descent method. After that, classical approximations for the signals statistics leads to the stochastic gradient algorithms counterpartsthe adaptive filters. In particular, the algorithms are: the least-mean squares (LMS), the SLMS (Stabilized LMS), the normalized LMS (NLMS), the affine projections (APA), the Ture-LMS (An LMS variant with multiple input data) and the stabilized True-LMS. Theoretical analysis for the mean-square error (MSE) are obtained and compared to simulations. Comparisons to several well known algorithms from the literature are also presented, showing advantages for the methods developed here. A certain fluency in linear and abstract algebras are assumed, although the main concepts are introduced in the text and in the appendices.Neste trabalho, n´os desenvolvemos uma teoria de filtros adaptativos cuja estrutura de filtragem e a entrada correspondente possuem alguma relação multilinear ou tensorial em seus coeficientes. Essas estruturas são altamente não-lineares, o que faz com que sua análise seja bastante desafiadora. Apesar disso, n´os desenvolvemos técnicas que nos permitem estudar uma ampla classe de tais algoritmos. O Trabalho emprega uma formulação geral usando um novo conceito, o de multitensores, que é uma soma de tensores de diversas ordens. A saída do sistema genérico sob estudo é definida como uma contração do multitensor de entrada com o multitensor que captura os parâmetros da estrutura de filtragem. Diferentes restrições impostas nas estruturas da entrada e/ou dos parâmetros resultam em uma miríade de modelos e algoritmos adaptativos diferentes que são analisados em detalhes, revelando reduções de complexidade computacional (Expressivas em alguns casos), desempenho em convergência e estabilidade, erro em regime, técnicas eficientes de implementação e vantagens competitivas. Vários trabalhos importantes da literatura são generalizados e unificados sob nossa formulação multitensorial, alcançando uma rica gama de aplicações. Esse estudo passa por uma revisão de conceitos provenientes de Álgebra Multilinear e tensores, o que nos permite definir todas as classes de sistemas que serão estudados. Em seguida, esses sistemas são estudados no contexto de Teoria da Estimação. Nos então desenvolvemos alguns métodos do gradiente exato para encontrar soluções dos problemas de estimação não-linear anteriormente definidos para todas as classes abordadas no trabalho. São eles: o método da descida mais íngrime puro, o método de Newton, e uma versão normalizada do algoritmo do gradiente. Depois, introduzimos aproximações clássicas nos parâmetros estatísticos dos sinais envolvidos a fim de obtermos algoritmos do gradiente estocástico filtros adaptativos. Em particular, o Least-Mean Square (LMS), o SLMS (Stabilized LMS), o LMS Normalizado (NLMS), o APA (Affine projections algorithm), o True-LMS (variante do LMS com m´ultiplos dados), o True-LMS estabilizado. Os resultados da an´alise teorica do MSE sao comparados com simulações. Comparações com os vários algoritmos não-lineares da literatura são também apresentadas, mostrando as vantagens dos métodos desenvolvidos. O trabalho assume uma certa fluência em álgebra linear e abstrata, embora todos os conceitos necessários sejam introduzidos ao longo do texto e nos apêndices.Biblioteca Digitais de Teses e Dissertações da USPLopes, Cássio GuimarãesPinheiro, Felipe Chaud2021-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-03-21T17:33:46Zoai:teses.usp.br:tde-21032022-113440Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-03-21T17:33:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Nonlinear adaptive algorithms with tensor rank decompositions.
Algoritmos adaptativos não-lineares com decomposições de posto tensorial
title Nonlinear adaptive algorithms with tensor rank decompositions.
spellingShingle Nonlinear adaptive algorithms with tensor rank decompositions.
Pinheiro, Felipe Chaud
Adaptive filtering
Álgebra multilinear
Estimação não linear
Low complexity
Nonlinear processing
Processamento de sinais adaptativos
Sistemas não lineares
Tensores
Tensors
Volterra series
title_short Nonlinear adaptive algorithms with tensor rank decompositions.
title_full Nonlinear adaptive algorithms with tensor rank decompositions.
title_fullStr Nonlinear adaptive algorithms with tensor rank decompositions.
title_full_unstemmed Nonlinear adaptive algorithms with tensor rank decompositions.
title_sort Nonlinear adaptive algorithms with tensor rank decompositions.
author Pinheiro, Felipe Chaud
author_facet Pinheiro, Felipe Chaud
author_role author
dc.contributor.none.fl_str_mv Lopes, Cássio Guimarães
dc.contributor.author.fl_str_mv Pinheiro, Felipe Chaud
dc.subject.por.fl_str_mv Adaptive filtering
Álgebra multilinear
Estimação não linear
Low complexity
Nonlinear processing
Processamento de sinais adaptativos
Sistemas não lineares
Tensores
Tensors
Volterra series
topic Adaptive filtering
Álgebra multilinear
Estimação não linear
Low complexity
Nonlinear processing
Processamento de sinais adaptativos
Sistemas não lineares
Tensores
Tensors
Volterra series
description In this work, we develop a theory of adaptive filters whose filtering structure and the corresponding input present some multilinear and/or tensorial relation in their coefficients. Such structures are highly nonlinear, which turns the analysis quite challenging. Nevertheless, we develop techniques that allow for studying a wide class of these algorithms. The work adopts a generic formulation using a new concept, the multitensors, which are, simply put, a sum of tensors of different orders. The system under study has its output defined as the contraction of the input multitensor and the parameter multitensor. Different restrictions imposed on the input and/or on the parameter multitensors result in a myriad of different models and corresponding adaptive algorithms that are analyzed in details, unveiling computational complexity reductions (expressive in some cases), convergence performance and stability, steady-state error, efficient implementation techniques and competitive advantages. Several important works from the literature are generalized and unified under our multitensorial formulation, achieving a wide range of applications. This study presents a review of concepts from multilinear algebra and tensors, which allows us to define all the classes of systems that will be considered here. In the sequel, such systems are studied in the context of Estimation Theory. Some exact gradientdescent methods are developed to find solutions for the nonlinear estimation problems previously defined for all classes covered in this work. They are: the gradient-descent method, the Newtons method and a normalized version of the gradient-descent method. After that, classical approximations for the signals statistics leads to the stochastic gradient algorithms counterpartsthe adaptive filters. In particular, the algorithms are: the least-mean squares (LMS), the SLMS (Stabilized LMS), the normalized LMS (NLMS), the affine projections (APA), the Ture-LMS (An LMS variant with multiple input data) and the stabilized True-LMS. Theoretical analysis for the mean-square error (MSE) are obtained and compared to simulations. Comparisons to several well known algorithms from the literature are also presented, showing advantages for the methods developed here. A certain fluency in linear and abstract algebras are assumed, although the main concepts are introduced in the text and in the appendices.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/
url https://www.teses.usp.br/teses/disponiveis/3/3142/tde-21032022-113440/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257237338193920