Algoritmos de aproximação para problemas de empacotamento
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-114839/ |
Resumo: | Problemas de empacotamento consistem em colocar, de uma forma econômica, uma coleção de objetos dentro de recipientes. Esses problemas podem diferir em duas linhas conforme o objetivo do problema de otimização em questão. Em uma destas linhas, o objetivo é minimizar o número de recipientes usados para empacotar os objetos. Em outra linha, os objetos devem ser empacotados em apenas um recipiente, sendo que este recipiente tem apenas uma dimensão ilimitada e todas as outras são limitadas. Neste caso, o objetivo é minimizar o 'tamanho'do empacotamento com relação à dimensão ilimitada do recipiente. Nesta tese investigamos as versões em que os objetos e os recipientes são bi- ou tridimensionais, e de 'formas ortogonais'. Assim, os objetos são retângulos ou caixas retangulares e os recipientes são faixas, placas, caixas de altura ou caixas de dimensões finitas (contêineres). Além disso, todos os empacotamentos devem ser ortogonais. Abordamos os seguintes problemas: o problema de empacotamento em faixa, o problema de empacotamento em placas, o problema de empacotamento tridimensional e o problema de empacotamento em contêineres. Esses problemas são NP-difíceis, não aproximáveis em termos absolutos além de certas constantes. Apresentamos algoritmos de aproximação para esses problemas e estudamos o seu desempenho assintótico. Descrevemos algoritmos on-line e off-line tanto para o caso orientado como para o caso em que ortogonais são permitidas. Para o problema de empacotamento em faixa, apresentamos um algoritmo com limite de desempenho assintótico não maior que 1,62 e outro, on-line, cujo limite de desempenho assintótico é 1,75. Ambos para o caso onde rotações são permitidas. Para o problema de empacotamento em placas, apresentamos um algoritmo com limite de desempenho assintótico não maior que 2,64 e outro, on-line, com limite de desempenho assintótico não maior que 3,25. Ambos também para o caso de rotações ortogonais são permitidas. Para o problema de empacotamento tridimensional para o caso orientado, apresentamos um algoritmo com limite de desempenho assintótica não maior que 2,67. Para o caso onde rotações em torno do eixo da altura são permitidas, apresentamos um algoritmo com um limite de desempenho assintótico 2,67 e outro, on-line, com um limite de desempenho assintótico 3,25. Para o problema de empacotamento em contêineres onde rotações são permitidas, apresentamos um algoritmo com um limite de desempenho assintótico 4,89 e para o caso on-line, um algoritmo com um limite de desempenho assintótico não maior que 6,25. Os limites acima ou são novos ou são melhores que os encontrados na literatura. Além disso, apresentamos resultados que relacionam a complexidade dos problemas da versão orientada com a versão em que rotações ortogonais são permitidas. Também apresentamos vários algoritmos de aproximação para casos particulares deste problemas: empacotamento de quadrados, de cubos e de objetos 'pequenos'. Para esses casos, os algoritmos que obtivemos têm limites de desempenho melhores que os acima mencionados |
id |
USP_34fe07ed4708245a34546a41ba63461c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20220712-114839 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Algoritmos de aproximação para problemas de empacotamentonot availableConfigurações CombinatóriasProblemas de empacotamento consistem em colocar, de uma forma econômica, uma coleção de objetos dentro de recipientes. Esses problemas podem diferir em duas linhas conforme o objetivo do problema de otimização em questão. Em uma destas linhas, o objetivo é minimizar o número de recipientes usados para empacotar os objetos. Em outra linha, os objetos devem ser empacotados em apenas um recipiente, sendo que este recipiente tem apenas uma dimensão ilimitada e todas as outras são limitadas. Neste caso, o objetivo é minimizar o 'tamanho'do empacotamento com relação à dimensão ilimitada do recipiente. Nesta tese investigamos as versões em que os objetos e os recipientes são bi- ou tridimensionais, e de 'formas ortogonais'. Assim, os objetos são retângulos ou caixas retangulares e os recipientes são faixas, placas, caixas de altura ou caixas de dimensões finitas (contêineres). Além disso, todos os empacotamentos devem ser ortogonais. Abordamos os seguintes problemas: o problema de empacotamento em faixa, o problema de empacotamento em placas, o problema de empacotamento tridimensional e o problema de empacotamento em contêineres. Esses problemas são NP-difíceis, não aproximáveis em termos absolutos além de certas constantes. Apresentamos algoritmos de aproximação para esses problemas e estudamos o seu desempenho assintótico. Descrevemos algoritmos on-line e off-line tanto para o caso orientado como para o caso em que ortogonais são permitidas. Para o problema de empacotamento em faixa, apresentamos um algoritmo com limite de desempenho assintótico não maior que 1,62 e outro, on-line, cujo limite de desempenho assintótico é 1,75. Ambos para o caso onde rotações são permitidas. Para o problema de empacotamento em placas, apresentamos um algoritmo com limite de desempenho assintótico não maior que 2,64 e outro, on-line, com limite de desempenho assintótico não maior que 3,25. Ambos também para o caso de rotações ortogonais são permitidas. Para o problema de empacotamento tridimensional para o caso orientado, apresentamos um algoritmo com limite de desempenho assintótica não maior que 2,67. Para o caso onde rotações em torno do eixo da altura são permitidas, apresentamos um algoritmo com um limite de desempenho assintótico 2,67 e outro, on-line, com um limite de desempenho assintótico 3,25. Para o problema de empacotamento em contêineres onde rotações são permitidas, apresentamos um algoritmo com um limite de desempenho assintótico 4,89 e para o caso on-line, um algoritmo com um limite de desempenho assintótico não maior que 6,25. Os limites acima ou são novos ou são melhores que os encontrados na literatura. Além disso, apresentamos resultados que relacionam a complexidade dos problemas da versão orientada com a versão em que rotações ortogonais são permitidas. Também apresentamos vários algoritmos de aproximação para casos particulares deste problemas: empacotamento de quadrados, de cubos e de objetos 'pequenos'. Para esses casos, os algoritmos que obtivemos têm limites de desempenho melhores que os acima mencionadosnot availableBiblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoMiyazawa, Flávio Keidi1997-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-114839/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-07-13T18:19:52Zoai:teses.usp.br:tde-20220712-114839Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-13T18:19:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Algoritmos de aproximação para problemas de empacotamento not available |
title |
Algoritmos de aproximação para problemas de empacotamento |
spellingShingle |
Algoritmos de aproximação para problemas de empacotamento Miyazawa, Flávio Keidi Configurações Combinatórias |
title_short |
Algoritmos de aproximação para problemas de empacotamento |
title_full |
Algoritmos de aproximação para problemas de empacotamento |
title_fullStr |
Algoritmos de aproximação para problemas de empacotamento |
title_full_unstemmed |
Algoritmos de aproximação para problemas de empacotamento |
title_sort |
Algoritmos de aproximação para problemas de empacotamento |
author |
Miyazawa, Flávio Keidi |
author_facet |
Miyazawa, Flávio Keidi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Wakabayashi, Yoshiko |
dc.contributor.author.fl_str_mv |
Miyazawa, Flávio Keidi |
dc.subject.por.fl_str_mv |
Configurações Combinatórias |
topic |
Configurações Combinatórias |
description |
Problemas de empacotamento consistem em colocar, de uma forma econômica, uma coleção de objetos dentro de recipientes. Esses problemas podem diferir em duas linhas conforme o objetivo do problema de otimização em questão. Em uma destas linhas, o objetivo é minimizar o número de recipientes usados para empacotar os objetos. Em outra linha, os objetos devem ser empacotados em apenas um recipiente, sendo que este recipiente tem apenas uma dimensão ilimitada e todas as outras são limitadas. Neste caso, o objetivo é minimizar o 'tamanho'do empacotamento com relação à dimensão ilimitada do recipiente. Nesta tese investigamos as versões em que os objetos e os recipientes são bi- ou tridimensionais, e de 'formas ortogonais'. Assim, os objetos são retângulos ou caixas retangulares e os recipientes são faixas, placas, caixas de altura ou caixas de dimensões finitas (contêineres). Além disso, todos os empacotamentos devem ser ortogonais. Abordamos os seguintes problemas: o problema de empacotamento em faixa, o problema de empacotamento em placas, o problema de empacotamento tridimensional e o problema de empacotamento em contêineres. Esses problemas são NP-difíceis, não aproximáveis em termos absolutos além de certas constantes. Apresentamos algoritmos de aproximação para esses problemas e estudamos o seu desempenho assintótico. Descrevemos algoritmos on-line e off-line tanto para o caso orientado como para o caso em que ortogonais são permitidas. Para o problema de empacotamento em faixa, apresentamos um algoritmo com limite de desempenho assintótico não maior que 1,62 e outro, on-line, cujo limite de desempenho assintótico é 1,75. Ambos para o caso onde rotações são permitidas. Para o problema de empacotamento em placas, apresentamos um algoritmo com limite de desempenho assintótico não maior que 2,64 e outro, on-line, com limite de desempenho assintótico não maior que 3,25. Ambos também para o caso de rotações ortogonais são permitidas. Para o problema de empacotamento tridimensional para o caso orientado, apresentamos um algoritmo com limite de desempenho assintótica não maior que 2,67. Para o caso onde rotações em torno do eixo da altura são permitidas, apresentamos um algoritmo com um limite de desempenho assintótico 2,67 e outro, on-line, com um limite de desempenho assintótico 3,25. Para o problema de empacotamento em contêineres onde rotações são permitidas, apresentamos um algoritmo com um limite de desempenho assintótico 4,89 e para o caso on-line, um algoritmo com um limite de desempenho assintótico não maior que 6,25. Os limites acima ou são novos ou são melhores que os encontrados na literatura. Além disso, apresentamos resultados que relacionam a complexidade dos problemas da versão orientada com a versão em que rotações ortogonais são permitidas. Também apresentamos vários algoritmos de aproximação para casos particulares deste problemas: empacotamento de quadrados, de cubos e de objetos 'pequenos'. Para esses casos, os algoritmos que obtivemos têm limites de desempenho melhores que os acima mencionados |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997-11-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-114839/ |
url |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-114839/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257216440074240 |