Essays on environmental and development Economics

Detalhes bibliográficos
Autor(a) principal: Barros, Pedro Henrique Batista de
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/12/12140/tde-14052024-170133/
Resumo: Paper 1: The causal impacts of local institutions on tropical deforestation are still little explored in the literature because they involve endogenous mechanisms that act, to a large extent, through socioeconomic and political channels that hinder identification. To fill such a gap, this paper contributes to the literature by exploring exogenous variations in local institutions to identify their effects on forest cover in Brazil, an ecologically and economically important country. To achieve this, we exploit exogenous geographical and historical variations to construct instruments for current institutions, assuming that initial conditions found by the country\'s settlers led to institutional designs that conditioned its subsequent development, explaining current institutions\' differences. Our main results show that the local institutional quality change has positive statistically significant heterogeneous causal effects on deforestation in Brazil, even after several robustness checks. To further explore this evidence, we used a Causal Random Forest algorithm to estimate individual treatment effects without ad hoc hypotheses, which further supported significant heterogeneous positive causal effects. This empirical evidence is important because demonstrates that public policies that aim to improve local institutional quality must adequately consider the potential side effects of deforestation. Paper 2: The existence of a trade-off in the relationship between economic growth and environmental quality is still an open debate, especially when considering the deforestation of tropical forests. Part of the literature states that the negative environmental impacts are focused on the early stages of development, when institutional quality is low, up to a turning point in which the economy moves towards sustainable development. However, many critics have supported that this is only a snapshot of a complex process, requiring additional empirical assessments to shed light on this controversy. In this context, this paper aims to contribute to the debate with a new approach to model the relationship between economic growth, capture by income per capita, and deforestation in the Amazon by controlling for institutional changes, market conditions, dynamic interactions, leakages, and spatial spillovers. After several robustness checks, our results supported the hypothesis that higher economic well-being is associated with lower deforestation rates in the Amazon and this relationship seems to be mediated by structural transformations and market access. Therefore, empirical evidence suggests that higher economic well-being could be reconciled with forest preservation in the Amazon. Paper 3: This paper maps palm oil plantations in the Eastern Amazon, the largest producer in Brazil, in 2014 and 2020, using machine learning algorithms, to estimate its causal effects on the trade-off between deforestation and economic activity. To achieve this goal, we combined optical spectral bands from Landsat-8, radar backscatter values from Sentinel-1, vegetation, and texture indices, and a linear spectral mixing model. The Random Forest algorithm presented the best classification with an overall accuracy of 94.53% and 95.53% for 2014 and 2020, respectively. Then, from a land use and land cover transition analysis, we identified an expansion of oil palm from 1,074 km² to 1,849 km²; around 156.88 km² (20.24%) occurred directly over vegetation cover. To overcome potentially complex endogenous mechanisms that hinder a causal interpretation for prior estimates, we propose to instrumentalize palm oil expansion using the maximum agro-climatically attainable palm oil yield from the Global Agro-Ecological Zoning (GAEZ). Our main results support that palm oil expansion in the Eastern Amazon has a statistically significant and positive causal effect on deforestation and a negative impact on economic activity in the non-agricultural sectors. In other words, palm oil expansion is increasing the environmental impacts of the region while creating centripetal forces that reduce performance in the industrial and service sectors, raising concerns about the social and environmental sustainability of this crop.
id USP_36f5fd0295f5ca648800f8e0ef6b7508
oai_identifier_str oai:teses.usp.br:tde-14052024-170133
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Essays on environmental and development EconomicsEnsaios de Economia do meio ambiente e do desenvolvimentoAmazonAmazôniaBrasilBrazilCausal Random ForestCrescimento econômicoDeforestationDesmatamentoEconomic growthInstituiçõesInstitutionsOil palmÓleo de palmaRandom Forest CausalRemote sensingSensoriamento remotoPaper 1: The causal impacts of local institutions on tropical deforestation are still little explored in the literature because they involve endogenous mechanisms that act, to a large extent, through socioeconomic and political channels that hinder identification. To fill such a gap, this paper contributes to the literature by exploring exogenous variations in local institutions to identify their effects on forest cover in Brazil, an ecologically and economically important country. To achieve this, we exploit exogenous geographical and historical variations to construct instruments for current institutions, assuming that initial conditions found by the country\'s settlers led to institutional designs that conditioned its subsequent development, explaining current institutions\' differences. Our main results show that the local institutional quality change has positive statistically significant heterogeneous causal effects on deforestation in Brazil, even after several robustness checks. To further explore this evidence, we used a Causal Random Forest algorithm to estimate individual treatment effects without ad hoc hypotheses, which further supported significant heterogeneous positive causal effects. This empirical evidence is important because demonstrates that public policies that aim to improve local institutional quality must adequately consider the potential side effects of deforestation. Paper 2: The existence of a trade-off in the relationship between economic growth and environmental quality is still an open debate, especially when considering the deforestation of tropical forests. Part of the literature states that the negative environmental impacts are focused on the early stages of development, when institutional quality is low, up to a turning point in which the economy moves towards sustainable development. However, many critics have supported that this is only a snapshot of a complex process, requiring additional empirical assessments to shed light on this controversy. In this context, this paper aims to contribute to the debate with a new approach to model the relationship between economic growth, capture by income per capita, and deforestation in the Amazon by controlling for institutional changes, market conditions, dynamic interactions, leakages, and spatial spillovers. After several robustness checks, our results supported the hypothesis that higher economic well-being is associated with lower deforestation rates in the Amazon and this relationship seems to be mediated by structural transformations and market access. Therefore, empirical evidence suggests that higher economic well-being could be reconciled with forest preservation in the Amazon. Paper 3: This paper maps palm oil plantations in the Eastern Amazon, the largest producer in Brazil, in 2014 and 2020, using machine learning algorithms, to estimate its causal effects on the trade-off between deforestation and economic activity. To achieve this goal, we combined optical spectral bands from Landsat-8, radar backscatter values from Sentinel-1, vegetation, and texture indices, and a linear spectral mixing model. The Random Forest algorithm presented the best classification with an overall accuracy of 94.53% and 95.53% for 2014 and 2020, respectively. Then, from a land use and land cover transition analysis, we identified an expansion of oil palm from 1,074 km² to 1,849 km²; around 156.88 km² (20.24%) occurred directly over vegetation cover. To overcome potentially complex endogenous mechanisms that hinder a causal interpretation for prior estimates, we propose to instrumentalize palm oil expansion using the maximum agro-climatically attainable palm oil yield from the Global Agro-Ecological Zoning (GAEZ). Our main results support that palm oil expansion in the Eastern Amazon has a statistically significant and positive causal effect on deforestation and a negative impact on economic activity in the non-agricultural sectors. In other words, palm oil expansion is increasing the environmental impacts of the region while creating centripetal forces that reduce performance in the industrial and service sectors, raising concerns about the social and environmental sustainability of this crop.Artigo 1: O impacto causal das instituições locais no desmatamento tropical é ainda pouco explorado na literatura porque envolve mecanismos endógenos que atuam, em grande medida, por meio de canais socioeconômicos e políticos que dificultam sua identificação. Para preencher essa lacuna, esse artigo contribui com a literatura ao explorar variações exógenas nas instituições locais para identificar seus efeitos na cobertura florestal do Brasil, um país ecologicamente e economicamente importante. Para atingir isso, explorou-se variações geográficas e históricas exógenas para construir instrumentos para as instituições correntes, assumindo que as condições iniciais encontradas pelos colonizadores do país levaram a desenhos institucionais que condicionaram seu desenvolvimento posterior, explicando diferenças atuais nas instituições. Os resultados principais confirmam que mudanças na qualidade institucional local possui um impacto positivo heterogêneo e estatisticamente significante no desmatamento do Brasil, mesmo após a realização de diversos testes de robustez. Com a finalidade de explorar mais essa evidência, utilizou-se um algoritmo de Random Forest Causal para estimar efeitos de tratamento individuais sem a necessidade de hipóteses ad hoc, o que confirmou a presença de significantes efeitos causais heterogêneos e positivos. Essa evidência empírica é importante no sentido de demonstrar que as políticas públicas que buscam melhorar a qualidade das instituições locais devem considerar adequadamente possíveis efeitos colaterais no desmatamento. Artigo 2: A existência de um trade-off na relação entre crescimento econômico e qualidade ambiental é ainda um debate em aberto, especialmente quando considerado o desmatamento de florestas tropicais. Parte da literatura afirma que os impactos negativos estão concentrados nos estágios iniciais de desenvolvimento, quando a qualidade institucional é baixa, até ocorrer um ponto de virada no qual a economia se move em direção a um desenvolvimento sustentável. Entretanto, muitos críticos afirmam que isso é apenas uma parte de um processo complexo, fato que querer evidências empíricas adicionais para lançar luz a essa controvérsia. Nesse contexto, esse artigo busca contribuir para o debate com uma nova abordagem para modelar a relação entre crescimento econômico, capturado pela renda per capita, e o desmatamento da Amazônia ao controlar por mudanças institucionais, condições de mercado, interações dinâmicas, vazamentos e transbordamentos espaciais. Após uma série de testes de robustez, os resultados suportaram a hipótese de que maior bem estar econômico é associado com menores taxas de desmatamento na Amazônia e que essa relação parece ser mediada por transformações estruturais e acesso a mercados. Portanto, essa evidência empírica sugere que maior bem estar econômico pode ser, ceteris paribus, conciliado com preservação florestal na Amazônia. Artigo 3: Esse artigo mapeia plantações de óleo de palma na Amazônia Oriental, a maior produtora do Brasil, em 2014 e 2020, usando algoritmos de aprendizado de máquina, para estimar seus efeitos causais no trade-off entre desmatamento e atividade econômica. Para atingir esse objetivo, combinou-se bandas espectrais óticas do Landsat-8 com valores de retroespalhamento do Sentinel-1, índices de vegetação e textura, e um modelo linear de mistura espectral. O algoritmo Random Forest apresentou a melhor classificação com uma acurácia geral de 94.53% e 95.53% para 2014 e 2020, respectivamente. Então, a partir de uma análise de transição de uso e cobertura da terra, identificou-se uma expansão do óleo de palma de 1.074 km² para 1.849 km²; com cerca de 156,88 km² (20.24%) ocorrendo diretamente sobre cobertura vegetal. Para evitar possíveis mecanismos endógenos complexos que impede uma interpretação causal para a estimação anterior, propõem-se a instrumentalização da expansão do óleo de palma utilizando o seu potencial agroclimático máximo obtido no Global Agro-Ecological Zoning (GAEZ). Os principais resultados atestam que a expansão do óleo de palma na Amazônia Oriental tem um efeito causal positivo e estatisticamente significante no desmatamento e um impacto negativo na atividade econômica nos setores não-agrícolas. Em outras palavras, a expansão do óleo de palma está aumentando os impactos ambientais da região ao mesmo tempo em que cria forças centrípetas que reduzem o desempenho dos setores industrial e de serviço, o que levanta preocupações acerca da sustentabilidade social e ambiental dessa cultura.Biblioteca Digitais de Teses e Dissertações da USPChimeli, Ariaster BaumgratzBarros, Pedro Henrique Batista de2024-02-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/12/12140/tde-14052024-170133/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-14052024-170133Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Essays on environmental and development Economics
Ensaios de Economia do meio ambiente e do desenvolvimento
title Essays on environmental and development Economics
spellingShingle Essays on environmental and development Economics
Barros, Pedro Henrique Batista de
Amazon
Amazônia
Brasil
Brazil
Causal Random Forest
Crescimento econômico
Deforestation
Desmatamento
Economic growth
Instituições
Institutions
Oil palm
Óleo de palma
Random Forest Causal
Remote sensing
Sensoriamento remoto
title_short Essays on environmental and development Economics
title_full Essays on environmental and development Economics
title_fullStr Essays on environmental and development Economics
title_full_unstemmed Essays on environmental and development Economics
title_sort Essays on environmental and development Economics
author Barros, Pedro Henrique Batista de
author_facet Barros, Pedro Henrique Batista de
author_role author
dc.contributor.none.fl_str_mv Chimeli, Ariaster Baumgratz
dc.contributor.author.fl_str_mv Barros, Pedro Henrique Batista de
dc.subject.por.fl_str_mv Amazon
Amazônia
Brasil
Brazil
Causal Random Forest
Crescimento econômico
Deforestation
Desmatamento
Economic growth
Instituições
Institutions
Oil palm
Óleo de palma
Random Forest Causal
Remote sensing
Sensoriamento remoto
topic Amazon
Amazônia
Brasil
Brazil
Causal Random Forest
Crescimento econômico
Deforestation
Desmatamento
Economic growth
Instituições
Institutions
Oil palm
Óleo de palma
Random Forest Causal
Remote sensing
Sensoriamento remoto
description Paper 1: The causal impacts of local institutions on tropical deforestation are still little explored in the literature because they involve endogenous mechanisms that act, to a large extent, through socioeconomic and political channels that hinder identification. To fill such a gap, this paper contributes to the literature by exploring exogenous variations in local institutions to identify their effects on forest cover in Brazil, an ecologically and economically important country. To achieve this, we exploit exogenous geographical and historical variations to construct instruments for current institutions, assuming that initial conditions found by the country\'s settlers led to institutional designs that conditioned its subsequent development, explaining current institutions\' differences. Our main results show that the local institutional quality change has positive statistically significant heterogeneous causal effects on deforestation in Brazil, even after several robustness checks. To further explore this evidence, we used a Causal Random Forest algorithm to estimate individual treatment effects without ad hoc hypotheses, which further supported significant heterogeneous positive causal effects. This empirical evidence is important because demonstrates that public policies that aim to improve local institutional quality must adequately consider the potential side effects of deforestation. Paper 2: The existence of a trade-off in the relationship between economic growth and environmental quality is still an open debate, especially when considering the deforestation of tropical forests. Part of the literature states that the negative environmental impacts are focused on the early stages of development, when institutional quality is low, up to a turning point in which the economy moves towards sustainable development. However, many critics have supported that this is only a snapshot of a complex process, requiring additional empirical assessments to shed light on this controversy. In this context, this paper aims to contribute to the debate with a new approach to model the relationship between economic growth, capture by income per capita, and deforestation in the Amazon by controlling for institutional changes, market conditions, dynamic interactions, leakages, and spatial spillovers. After several robustness checks, our results supported the hypothesis that higher economic well-being is associated with lower deforestation rates in the Amazon and this relationship seems to be mediated by structural transformations and market access. Therefore, empirical evidence suggests that higher economic well-being could be reconciled with forest preservation in the Amazon. Paper 3: This paper maps palm oil plantations in the Eastern Amazon, the largest producer in Brazil, in 2014 and 2020, using machine learning algorithms, to estimate its causal effects on the trade-off between deforestation and economic activity. To achieve this goal, we combined optical spectral bands from Landsat-8, radar backscatter values from Sentinel-1, vegetation, and texture indices, and a linear spectral mixing model. The Random Forest algorithm presented the best classification with an overall accuracy of 94.53% and 95.53% for 2014 and 2020, respectively. Then, from a land use and land cover transition analysis, we identified an expansion of oil palm from 1,074 km² to 1,849 km²; around 156.88 km² (20.24%) occurred directly over vegetation cover. To overcome potentially complex endogenous mechanisms that hinder a causal interpretation for prior estimates, we propose to instrumentalize palm oil expansion using the maximum agro-climatically attainable palm oil yield from the Global Agro-Ecological Zoning (GAEZ). Our main results support that palm oil expansion in the Eastern Amazon has a statistically significant and positive causal effect on deforestation and a negative impact on economic activity in the non-agricultural sectors. In other words, palm oil expansion is increasing the environmental impacts of the region while creating centripetal forces that reduce performance in the industrial and service sectors, raising concerns about the social and environmental sustainability of this crop.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/12/12140/tde-14052024-170133/
url https://www.teses.usp.br/teses/disponiveis/12/12140/tde-14052024-170133/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256508924952576