Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness

Detalhes bibliográficos
Autor(a) principal: Tavares, Anderson Carlos Moreira
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03082017-230907/
Resumo: Image segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions.
id USP_3af048f5ba3de3f4946dec879fcf3b81
oai_identifier_str oai:teses.usp.br:tde-03082017-230907
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustnessReparação interativa de segmentações 3D com transformada imagem-floresta, supervoxels, robustez de sementesGraph-based segmentationImage-foresting transformRobustez de sementesSeed robustnessSegmentação baseada em grafosSupervoxelsSupervoxelsTransformada imagem-florestaImage segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions.Segmentação de imagem consiste no seu particionamento em regiões, tal como para isolar os pixels pertencentes a objetos de interesse em uma imagem, sendo uma etapa importante para visão computacional, processamento de imagens médicas e outras aplicações. Muitas vezes a segmentação automática gera resultados com imperfeições. O usuário pode corrigi-las editando-a manualmente, interativamente ou simplesmente descartar o resultado e gerar outro automaticamente. Métodos interativos combinam os benefícios dos métodos manuais e automáticos, reduzindo o esforço do usuário e utilizando seu conhecimento de alto nível. Nos métodos baseados em sementes, para continuar ou reparar uma segmentação prévia (presegmentação), evitando o usuário começar do zero, é necessário resolver o Problema da Segmentação Interativa Reversa (RISP), ou seja, estimar automaticamente as sementes que o gerariam. Para isso, este trabalho particiona o objeto da segmentação em núcleos. Em um núcleo, duas sementes separadamente produzem o mesmo resultado, tornando uma delas redundante. Com isso, apenas uma semente por núcleo é necessária. Núcleos contidos nos resultados de outros núcleos são redundantes e também podem ser descartados, reduzindo ainda mais o conjunto de sementes, um processo denominado Análise de Redundância. Um conjunto mínimo de sementes para a presegmentação é gerado e o problema da reparação interativa pode então ser resolvido através da adição de novas sementes ou remoção. Dentro do arcabouço da Transformada Imagem-Floresta (IFT), novos métodos como Oriented Image-Foresting Transform (OIFT) e Oriented Relative Fuzzy Connectedness (ORFC) foram desenvolvidos. Todavia, não há algoritmos para calcular o núcleo destes métodos. Este trabalho desenvolve tais algoritmos, com prova de corretude. Os núcleos também nos fornecem uma indicação do grau de robustez dos métodos sobre o posicionamento das sementes. Por isso, um método híbrido do GraphCut com o núcleo do ORFC, bem como um Coeficiente de Robustez (RC), foram desenvolvidos. Neste trabalho também foi desenvolvida outra solução para reparar segmentações, a qual é baseada em IFT-SLIC, originalmente utilizada para gerar supervoxels. Resultados experimentais analisam, comparam e demonstram o potencial destas soluções.Biblioteca Digitais de Teses e Dissertações da USPMiranda, Paulo Andre Vechiatto deTavares, Anderson Carlos Moreira2017-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-03082017-230907/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-03082017-230907Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
Reparação interativa de segmentações 3D com transformada imagem-floresta, supervoxels, robustez de sementes
title Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
spellingShingle Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
Tavares, Anderson Carlos Moreira
Graph-based segmentation
Image-foresting transform
Robustez de sementes
Seed robustness
Segmentação baseada em grafos
Supervoxels
Supervoxels
Transformada imagem-floresta
title_short Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
title_full Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
title_fullStr Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
title_full_unstemmed Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
title_sort Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness
author Tavares, Anderson Carlos Moreira
author_facet Tavares, Anderson Carlos Moreira
author_role author
dc.contributor.none.fl_str_mv Miranda, Paulo Andre Vechiatto de
dc.contributor.author.fl_str_mv Tavares, Anderson Carlos Moreira
dc.subject.por.fl_str_mv Graph-based segmentation
Image-foresting transform
Robustez de sementes
Seed robustness
Segmentação baseada em grafos
Supervoxels
Supervoxels
Transformada imagem-floresta
topic Graph-based segmentation
Image-foresting transform
Robustez de sementes
Seed robustness
Segmentação baseada em grafos
Supervoxels
Supervoxels
Transformada imagem-floresta
description Image segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03082017-230907/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03082017-230907/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256644118904832