Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-28042016-211904/ |
Resumo: | A segmentação de imagens consiste em dividir uma imagem em regiões ou objetos que a compõem, como, por exemplo, para isolar os pixels de um objeto alvo de uma dada aplicação. Em segmentação de imagens médicas, o objeto de interesse comumente apresenta transições em suas bordas predominantemente do tipo claro para escuro ou escuro para claro. Métodos tradicionais por região, como a conexidade fuzzy relativa (RFC - Relative Fuzzy Connectedness), não distinguem bem entre essas bordas similares com orientações opostas. A especificação da polaridade de contorno pode ajudar a amenizar esse problema, o que requer uma formulação matemática em grafos dirigidos. Uma discussão sobre como incorporar essa propriedade no arcabouço do RFC é apresentada neste trabalho. Uma prova teórica da otimalidade do novo algoritmo, chamado conexidade fuzzy relativa com orientação (ORFC - Oriented Relative Fuzzy Connectedness), em termos de uma função de energia em grafos dirigidos sujeita as restrições de sementes é apresentada, bem como a sua apli- cação em poderosos métodos híbridos de segmentação. O método híbrido proposto ORFC &Graph Cut preserva a robustez do ORFC em relação à escolha de sementes, evitando o problema do viés de encolhimento do método de Corte em Grafo (GC - Graph Cut), e mantém o forte controle do GC no delineamento de contornos de bordas irregulares da imagem. Os métodos propostos são avaliados usando imagens médicas de ressonáncia magnética (RM) e tomografia computadorizada (TC) do cérebro humano e de estudos torácicos. |
id |
USP_58b0bc8da25eacbbcea2e008930e027e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28042016-211904 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagensRelative fuzzy connectedness on directed graphs and its appication in a hybrid method for interactive image segmentationAlgoritmos de busca em grafoConexidade fuzzy relativaGraph search algorithmsGraph-cut segmentationImage foresting transformRelative fuzzy connectednessSegmentação por corte em grafoTransformada imagem-florestaA segmentação de imagens consiste em dividir uma imagem em regiões ou objetos que a compõem, como, por exemplo, para isolar os pixels de um objeto alvo de uma dada aplicação. Em segmentação de imagens médicas, o objeto de interesse comumente apresenta transições em suas bordas predominantemente do tipo claro para escuro ou escuro para claro. Métodos tradicionais por região, como a conexidade fuzzy relativa (RFC - Relative Fuzzy Connectedness), não distinguem bem entre essas bordas similares com orientações opostas. A especificação da polaridade de contorno pode ajudar a amenizar esse problema, o que requer uma formulação matemática em grafos dirigidos. Uma discussão sobre como incorporar essa propriedade no arcabouço do RFC é apresentada neste trabalho. Uma prova teórica da otimalidade do novo algoritmo, chamado conexidade fuzzy relativa com orientação (ORFC - Oriented Relative Fuzzy Connectedness), em termos de uma função de energia em grafos dirigidos sujeita as restrições de sementes é apresentada, bem como a sua apli- cação em poderosos métodos híbridos de segmentação. O método híbrido proposto ORFC &Graph Cut preserva a robustez do ORFC em relação à escolha de sementes, evitando o problema do viés de encolhimento do método de Corte em Grafo (GC - Graph Cut), e mantém o forte controle do GC no delineamento de contornos de bordas irregulares da imagem. Os métodos propostos são avaliados usando imagens médicas de ressonáncia magnética (RM) e tomografia computadorizada (TC) do cérebro humano e de estudos torácicos.Image segmentation consists of dividing an image into its composing regions or objects, for example, to isolate the pixels of a target object of a given application. In segmentation of medical images, the object of interest commonly presents transitions at its border predominantly from bright to dark or dark to bright. Traditional region-based methods of image segmentation, such as Relative Fuzzy Connectedness (RFC), do not distinguish well between similar boundaries with opposite orientations. The specification of the boundary polarity can help to alleviate this problem but this requires a mathematical formulation on directed graphs. A discussion on how to incorporate this property in the RFC framework is presented in this work. A theoretical proof of the optimality of the new algorithm, called Oriented Relative Fuzzy Connectedness (ORFC), in terms of an energy function on directed graphs subject to seed constraints is presented, and its application in powerful hybrid segmentation methods. The hybrid method proposed ORFC&Graph Cut preserves the robustness of ORFC respect to the seed choice, avoiding the shrinking problem of Graph Cut (GC), and keeps the strong control of the GC in the contour delination of irregular image boundaries. The proposed methods are evaluated using magnetic resonance medical imaging (MR) and computed tomography (CT) of the human brain and thoracic studies.Biblioteca Digitais de Teses e Dissertações da USPMiranda, Paulo Andre Vechiatto deCcacyahuillca Bejar, Hans Harley2015-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-28042016-211904/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-28042016-211904Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens Relative fuzzy connectedness on directed graphs and its appication in a hybrid method for interactive image segmentation |
title |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens |
spellingShingle |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens Ccacyahuillca Bejar, Hans Harley Algoritmos de busca em grafo Conexidade fuzzy relativa Graph search algorithms Graph-cut segmentation Image foresting transform Relative fuzzy connectedness Segmentação por corte em grafo Transformada imagem-floresta |
title_short |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens |
title_full |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens |
title_fullStr |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens |
title_full_unstemmed |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens |
title_sort |
Conexidade fuzzy relativa em grafos dirigidos e sua aplicação em um método híbrido para segmentação interativa de imagens |
author |
Ccacyahuillca Bejar, Hans Harley |
author_facet |
Ccacyahuillca Bejar, Hans Harley |
author_role |
author |
dc.contributor.none.fl_str_mv |
Miranda, Paulo Andre Vechiatto de |
dc.contributor.author.fl_str_mv |
Ccacyahuillca Bejar, Hans Harley |
dc.subject.por.fl_str_mv |
Algoritmos de busca em grafo Conexidade fuzzy relativa Graph search algorithms Graph-cut segmentation Image foresting transform Relative fuzzy connectedness Segmentação por corte em grafo Transformada imagem-floresta |
topic |
Algoritmos de busca em grafo Conexidade fuzzy relativa Graph search algorithms Graph-cut segmentation Image foresting transform Relative fuzzy connectedness Segmentação por corte em grafo Transformada imagem-floresta |
description |
A segmentação de imagens consiste em dividir uma imagem em regiões ou objetos que a compõem, como, por exemplo, para isolar os pixels de um objeto alvo de uma dada aplicação. Em segmentação de imagens médicas, o objeto de interesse comumente apresenta transições em suas bordas predominantemente do tipo claro para escuro ou escuro para claro. Métodos tradicionais por região, como a conexidade fuzzy relativa (RFC - Relative Fuzzy Connectedness), não distinguem bem entre essas bordas similares com orientações opostas. A especificação da polaridade de contorno pode ajudar a amenizar esse problema, o que requer uma formulação matemática em grafos dirigidos. Uma discussão sobre como incorporar essa propriedade no arcabouço do RFC é apresentada neste trabalho. Uma prova teórica da otimalidade do novo algoritmo, chamado conexidade fuzzy relativa com orientação (ORFC - Oriented Relative Fuzzy Connectedness), em termos de uma função de energia em grafos dirigidos sujeita as restrições de sementes é apresentada, bem como a sua apli- cação em poderosos métodos híbridos de segmentação. O método híbrido proposto ORFC &Graph Cut preserva a robustez do ORFC em relação à escolha de sementes, evitando o problema do viés de encolhimento do método de Corte em Grafo (GC - Graph Cut), e mantém o forte controle do GC no delineamento de contornos de bordas irregulares da imagem. Os métodos propostos são avaliados usando imagens médicas de ressonáncia magnética (RM) e tomografia computadorizada (TC) do cérebro humano e de estudos torácicos. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-28042016-211904/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-28042016-211904/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257430734405632 |