Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas

Detalhes bibliográficos
Autor(a) principal: Lima, Jamison José da Silva
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-01112017-111709/
Resumo: A identificação de especialistas consiste na análise automática de informações sobre um conjunto de indivíduos para a localização daqueles com maior conhecimento em determinado tópico. Seus conhecimentos podem ser aplicados para a melhoria da produtividade em projetos de trabalho ou pesquisa e na localização de pesquisadores capacitados para avaliarem trabalhos de pesquisa ou para compor bancas de mestrado e doutorado. Para isso é interessante uma boa fonte de informações sobre os candidatos, de forma a otimizar o processo de identificação. No Brasil existe uma base de currículos que centraliza as informações sobre os pesquisadores brasileiros, a Plataforma Lattes. Os dados dessa plataforma são utilizados nesse trabalho para a realização da identificação de especialistas de acordo com suas áreas de atuação. São coletados dados da Plataforma e realizadas três etapas para compor uma lista ordenada dos principais especialistas de determinada área identificados pelo algoritmo proposto. A primeira etapa é a utilização da métrica TF-IDF, de modo que seus resultados são combinados com os estratos Qualis das publicações de cada autor, para finalmente ser aplicado um algoritmo de propagação para a geração da lista de especialistas. Após uma extensiva otimização dos parâmetros envolvidos no algoritmo, os resultados foram comparados com outra técnica existente que foi utilizada como base para esse projeto. Os resultados foram validados a partir de três conjuntos de pesquisadores coletados para esse projeto. O primeiro deles envolveu os pesquisadores contemplados com a Bolsa Produtividade em Pesquisa CNPq. Os resultados de dois questionários envolvendo pesquisadores das áreas de Inteligência Artificial e Nanotecnologia também foram utilizados. A partir dos resultados obtidos, foi possível notar que a técnica proposta aprimora significativamente os resultados do conjunto de Bolsistas Produtividade. Por outro lado, os resultados obtidos para os conjuntos de pesquisadores de Inteligência Artificial e Nanotecnologia foram ligeiramente melhores para a abordagem base. Os dados, algoritmos e resultados obtidos nesse trabalho poderão ser utilizados futuramente para aprimorar a identificação de especialistas
id USP_3afdaeb9c5c4d575fea331c726a83fd5
oai_identifier_str oai:teses.usp.br:tde-01112017-111709
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicasA composite approach for expert finding in academic social networksCurrículos LattesExpert findingIdentificação de especialistasLattes CurriculaRedes sociaisSocial networksA identificação de especialistas consiste na análise automática de informações sobre um conjunto de indivíduos para a localização daqueles com maior conhecimento em determinado tópico. Seus conhecimentos podem ser aplicados para a melhoria da produtividade em projetos de trabalho ou pesquisa e na localização de pesquisadores capacitados para avaliarem trabalhos de pesquisa ou para compor bancas de mestrado e doutorado. Para isso é interessante uma boa fonte de informações sobre os candidatos, de forma a otimizar o processo de identificação. No Brasil existe uma base de currículos que centraliza as informações sobre os pesquisadores brasileiros, a Plataforma Lattes. Os dados dessa plataforma são utilizados nesse trabalho para a realização da identificação de especialistas de acordo com suas áreas de atuação. São coletados dados da Plataforma e realizadas três etapas para compor uma lista ordenada dos principais especialistas de determinada área identificados pelo algoritmo proposto. A primeira etapa é a utilização da métrica TF-IDF, de modo que seus resultados são combinados com os estratos Qualis das publicações de cada autor, para finalmente ser aplicado um algoritmo de propagação para a geração da lista de especialistas. Após uma extensiva otimização dos parâmetros envolvidos no algoritmo, os resultados foram comparados com outra técnica existente que foi utilizada como base para esse projeto. Os resultados foram validados a partir de três conjuntos de pesquisadores coletados para esse projeto. O primeiro deles envolveu os pesquisadores contemplados com a Bolsa Produtividade em Pesquisa CNPq. Os resultados de dois questionários envolvendo pesquisadores das áreas de Inteligência Artificial e Nanotecnologia também foram utilizados. A partir dos resultados obtidos, foi possível notar que a técnica proposta aprimora significativamente os resultados do conjunto de Bolsistas Produtividade. Por outro lado, os resultados obtidos para os conjuntos de pesquisadores de Inteligência Artificial e Nanotecnologia foram ligeiramente melhores para a abordagem base. Os dados, algoritmos e resultados obtidos nesse trabalho poderão ser utilizados futuramente para aprimorar a identificação de especialistasExpert finding consists in the automatic analysis of informations about a set of people with the objective of finding those with greater knowledge on a particular topic. His knowledge can be applied to improve the productivity in research and work projects and to locate researchers who are capable of evaluating research papers or for masters and doctoral degrees. For this objective it\'s interesting a good source of information about the candidates, in order to optimize the process of identification. In Brazil there\'s a curriculum base that centralizes the information about Brazilian researchers, the Lattes Plataform. It\'s data is used in this work to perform the expert finding according to the candidate\'s areas of activity. Data are collected from the Platform and three steps performed to generate a ordered list of the main specialists of a given area identified by the proposed algorithm. The first step is to use the TF-IDF metric, so that its results are combined with the Qualis strata from the publications of each author, to finally be applied a propagation algorithm for the generation of the specialists list. After an extensive optimization of the parameters involved in the algorithm, the results were compared with another technique that was used as the basis for this project. The results were validated from three sets of researchers collected for this project. The first one involved the researchers contemplated with the CNPq Productivity Grant. The results of two questionnaires involving researchers from the areas of Artificial Intelligence and Nanotechnology were also used. From the results obtained, it was noticeable that the proposed technique significantly improves the results of the Productivity Grant set. On the other hand, the results obtained for the Artificial Intelligence and Nanotechnology research groups were slightly better for the base approach. The data, algorithms and results obtained in this work may be used in the future to improve the expert findingBiblioteca Digitais de Teses e Dissertações da USPDigiampietri, Luciano AntonioLima, Jamison José da Silva2017-09-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-01112017-111709/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-01112017-111709Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
A composite approach for expert finding in academic social networks
title Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
spellingShingle Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
Lima, Jamison José da Silva
Currículos Lattes
Expert finding
Identificação de especialistas
Lattes Curricula
Redes sociais
Social networks
title_short Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
title_full Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
title_fullStr Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
title_full_unstemmed Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
title_sort Uma abordagem composta para a identificação de especialistas nas redes sociais acadêmicas
author Lima, Jamison José da Silva
author_facet Lima, Jamison José da Silva
author_role author
dc.contributor.none.fl_str_mv Digiampietri, Luciano Antonio
dc.contributor.author.fl_str_mv Lima, Jamison José da Silva
dc.subject.por.fl_str_mv Currículos Lattes
Expert finding
Identificação de especialistas
Lattes Curricula
Redes sociais
Social networks
topic Currículos Lattes
Expert finding
Identificação de especialistas
Lattes Curricula
Redes sociais
Social networks
description A identificação de especialistas consiste na análise automática de informações sobre um conjunto de indivíduos para a localização daqueles com maior conhecimento em determinado tópico. Seus conhecimentos podem ser aplicados para a melhoria da produtividade em projetos de trabalho ou pesquisa e na localização de pesquisadores capacitados para avaliarem trabalhos de pesquisa ou para compor bancas de mestrado e doutorado. Para isso é interessante uma boa fonte de informações sobre os candidatos, de forma a otimizar o processo de identificação. No Brasil existe uma base de currículos que centraliza as informações sobre os pesquisadores brasileiros, a Plataforma Lattes. Os dados dessa plataforma são utilizados nesse trabalho para a realização da identificação de especialistas de acordo com suas áreas de atuação. São coletados dados da Plataforma e realizadas três etapas para compor uma lista ordenada dos principais especialistas de determinada área identificados pelo algoritmo proposto. A primeira etapa é a utilização da métrica TF-IDF, de modo que seus resultados são combinados com os estratos Qualis das publicações de cada autor, para finalmente ser aplicado um algoritmo de propagação para a geração da lista de especialistas. Após uma extensiva otimização dos parâmetros envolvidos no algoritmo, os resultados foram comparados com outra técnica existente que foi utilizada como base para esse projeto. Os resultados foram validados a partir de três conjuntos de pesquisadores coletados para esse projeto. O primeiro deles envolveu os pesquisadores contemplados com a Bolsa Produtividade em Pesquisa CNPq. Os resultados de dois questionários envolvendo pesquisadores das áreas de Inteligência Artificial e Nanotecnologia também foram utilizados. A partir dos resultados obtidos, foi possível notar que a técnica proposta aprimora significativamente os resultados do conjunto de Bolsistas Produtividade. Por outro lado, os resultados obtidos para os conjuntos de pesquisadores de Inteligência Artificial e Nanotecnologia foram ligeiramente melhores para a abordagem base. Os dados, algoritmos e resultados obtidos nesse trabalho poderão ser utilizados futuramente para aprimorar a identificação de especialistas
publishDate 2017
dc.date.none.fl_str_mv 2017-09-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/100/100131/tde-01112017-111709/
url http://www.teses.usp.br/teses/disponiveis/100/100131/tde-01112017-111709/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256481056948224