Robust outlier labeling rules for light-tailed and heavy-tailed Data

Detalhes bibliográficos
Autor(a) principal: Silva, Kelly Cristina Ramos da
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-145141/
Resumo: Outlier rules are used to detect outliers in univariate data. A commonly used outlier rule is based on a graphical tool for univariate data analysis, named the boxplot. However, it is well known that boxplot exhibits significantly lower performance for skewed distributions, in comparison to the symmetric case. In order to overcome this deficiency, an outlier rule known as adjusted boxplot, has been proposed in the literature. Adjusted boxplot modifies the classical boxplot by incorporating into it a skewness measure. Although this modification has resulted in a state-of-the-art version of the classical boxplot, it has the drawback of leading to a rule that is not flexible enough to permit easily to pre-specify a nominal outside rate. Furthermore, the adjusted boxplot can present, for some situations, significantly higher computational cost than the classical boxplot, since its computational complexity is O(nlogn), while the classical boxplot is O(n): In order to address those issues, this thesis proposes a more formal approach to deriving outlier rules that proved to produce rules which exhibit overall better performance than that of the adjusted boxplot, specially as the contamination level increases. Moreover, those proposed rules have the advantages of being more flexible and possessing lower computational cost than the adjusted boxplot. Furthermore, it is shown that the classical boxplot and many of its modifications or variations are unified by the same concept introduced by this thesis: quartile contrast. The problem with the outlier rules based on quartile contrast, as well as the adjusted boxplot, lies in the fact that they are more suitable for light-tailed data than for heavy-tailed data. For heavy-tailed data, it has been proposed in the literature an outlier rule known as the generalized boxplot. The main problem with the generalized boxplot lies in the fact it is very unstable, since a single outlier might dramatically affect its performance. In order to address this issue, the thesis uses the quartile contrast approach to deriving an outlier rule sensitive to tail heaviness. The experimental analysis show that the tail-heaviness sensitive outlier rule proposed by the thesis indeed presents more stable performance than the generalized boxplot. The performance evaluation of outlier rules is a problem on its own. Therefore, to measure performance of outlier rules, the thesis introduces the GME, a measure that has proved to be more effective to assess performance of outlier rules than the traditional measures involving only false positive rate and false negative rate.
id USP_3c00cfbd4f91545ab7ab602df688bc0e
oai_identifier_str oai:teses.usp.br:tde-29042019-145141
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Robust outlier labeling rules for light-tailed and heavy-tailed DataRegras robustas para rotular outliers em dados de caudas leves e caudas pesadas.Assimetria ou peso da caudaErro de rotulaçãoEvaluation measureMedida de avaliaçãoMétodos robustosOutlier rulesOutside rateRegras robustasRobust methodsSkewness or tail heavinessOutlier rules are used to detect outliers in univariate data. A commonly used outlier rule is based on a graphical tool for univariate data analysis, named the boxplot. However, it is well known that boxplot exhibits significantly lower performance for skewed distributions, in comparison to the symmetric case. In order to overcome this deficiency, an outlier rule known as adjusted boxplot, has been proposed in the literature. Adjusted boxplot modifies the classical boxplot by incorporating into it a skewness measure. Although this modification has resulted in a state-of-the-art version of the classical boxplot, it has the drawback of leading to a rule that is not flexible enough to permit easily to pre-specify a nominal outside rate. Furthermore, the adjusted boxplot can present, for some situations, significantly higher computational cost than the classical boxplot, since its computational complexity is O(nlogn), while the classical boxplot is O(n): In order to address those issues, this thesis proposes a more formal approach to deriving outlier rules that proved to produce rules which exhibit overall better performance than that of the adjusted boxplot, specially as the contamination level increases. Moreover, those proposed rules have the advantages of being more flexible and possessing lower computational cost than the adjusted boxplot. Furthermore, it is shown that the classical boxplot and many of its modifications or variations are unified by the same concept introduced by this thesis: quartile contrast. The problem with the outlier rules based on quartile contrast, as well as the adjusted boxplot, lies in the fact that they are more suitable for light-tailed data than for heavy-tailed data. For heavy-tailed data, it has been proposed in the literature an outlier rule known as the generalized boxplot. The main problem with the generalized boxplot lies in the fact it is very unstable, since a single outlier might dramatically affect its performance. In order to address this issue, the thesis uses the quartile contrast approach to deriving an outlier rule sensitive to tail heaviness. The experimental analysis show that the tail-heaviness sensitive outlier rule proposed by the thesis indeed presents more stable performance than the generalized boxplot. The performance evaluation of outlier rules is a problem on its own. Therefore, to measure performance of outlier rules, the thesis introduces the GME, a measure that has proved to be more effective to assess performance of outlier rules than the traditional measures involving only false positive rate and false negative rate.As regras de outlier são usadas para detectar outlier em dados univariados. Uma regra de outlier comumente usada é baseada em uma ferramenta gráfica para análise univariada de dados, denominada boxplot. No entanto, é bem conhecido que o boxplot apresenta um desempenho significativamente inferior para distribuições assimétricas, em comparação com o caso simétrico. Para superar essa deficiência, uma regra de outlier conhecida como boxplot ajustado foi proposta na literatura. O boxplot ajustado é uma modificação do boxplot clássico, incorporando nele uma medida de assimetria. Embora o boxplot ajustado tenha resultado em uma versão melhorada, se comparada ao boxplot clássico, ele tem a desvantagem de ser uma regra não flexível o suficiente para permitir a pré-especificação de um erro nominal de rotulação. Além disso, o boxplot ajustado pode apresentar, para algumas situações, um custo computacional significativamente maior se comparado ao boxplot clássico, já que a sua complexidade computacional é O(nlogn), enquanto o boxplot clássico é O(n): A fim de abordar essas questões, esta tese propõe uma abordagem mais formal para deduzir regras de outlier que produzim regras que exibem um desempenho geral melhor do que o do boxplot ajustado, especialmente à medida que o nível de contaminação aumenta. Além disso, essas regras propostas têm as vantagens de serem mais flexíveis e possuírem menor custo computacional do que o boxplot ajustado. Além disso, é mostrado que o boxplot clássico e muitas de suas modificações ou variações são unificadas pelo mesmo conceito introduzido por esta tese: contraste de quartis. O problema com as regras de outlier baseadas em contraste de quartis, bem como o boxplot ajustado, reside no fato de que elas são mais adequadas para dados unimodais simétricos e assimétricos do que para dados com cauda pesada. Para dados de cauda pesada, foi proposto na literatura uma regra de outlier conhecida como boxplot generalizado. O principal problema com o boxplot generalizado está no fato de ele ser muito instável, já que um único outlier pode afetar drasticamente seu desempenho. Para resolver esse problema, a tese usa a abordagem contraste de quartis para deduzir uma regra de outlier sensível ao peso da cauda. As análises experimentais mostram que a regra de outlier sensível ao peso da cauda proposta pela tese realmente apresenta um desempenho mais estável do que o boxplot generalizado. A avaliação de desempenho de regras de outlier é um problema por si só. Portanto, para medir o desempenho de regras outlier, a tese apresenta a GME, uma medida que se mostrou mais eficaz para avaliar o desempenho de regras de outlier do que as medidas tradicionais envolvendo apenas taxa de falsos positivos e taxa de falsos negativos.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deSilva, Kelly Cristina Ramos da2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-145141/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T23:48:48Zoai:teses.usp.br:tde-29042019-145141Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T23:48:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Robust outlier labeling rules for light-tailed and heavy-tailed Data
Regras robustas para rotular outliers em dados de caudas leves e caudas pesadas.
title Robust outlier labeling rules for light-tailed and heavy-tailed Data
spellingShingle Robust outlier labeling rules for light-tailed and heavy-tailed Data
Silva, Kelly Cristina Ramos da
Assimetria ou peso da cauda
Erro de rotulação
Evaluation measure
Medida de avaliação
Métodos robustos
Outlier rules
Outside rate
Regras robustas
Robust methods
Skewness or tail heaviness
title_short Robust outlier labeling rules for light-tailed and heavy-tailed Data
title_full Robust outlier labeling rules for light-tailed and heavy-tailed Data
title_fullStr Robust outlier labeling rules for light-tailed and heavy-tailed Data
title_full_unstemmed Robust outlier labeling rules for light-tailed and heavy-tailed Data
title_sort Robust outlier labeling rules for light-tailed and heavy-tailed Data
author Silva, Kelly Cristina Ramos da
author_facet Silva, Kelly Cristina Ramos da
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Silva, Kelly Cristina Ramos da
dc.subject.por.fl_str_mv Assimetria ou peso da cauda
Erro de rotulação
Evaluation measure
Medida de avaliação
Métodos robustos
Outlier rules
Outside rate
Regras robustas
Robust methods
Skewness or tail heaviness
topic Assimetria ou peso da cauda
Erro de rotulação
Evaluation measure
Medida de avaliação
Métodos robustos
Outlier rules
Outside rate
Regras robustas
Robust methods
Skewness or tail heaviness
description Outlier rules are used to detect outliers in univariate data. A commonly used outlier rule is based on a graphical tool for univariate data analysis, named the boxplot. However, it is well known that boxplot exhibits significantly lower performance for skewed distributions, in comparison to the symmetric case. In order to overcome this deficiency, an outlier rule known as adjusted boxplot, has been proposed in the literature. Adjusted boxplot modifies the classical boxplot by incorporating into it a skewness measure. Although this modification has resulted in a state-of-the-art version of the classical boxplot, it has the drawback of leading to a rule that is not flexible enough to permit easily to pre-specify a nominal outside rate. Furthermore, the adjusted boxplot can present, for some situations, significantly higher computational cost than the classical boxplot, since its computational complexity is O(nlogn), while the classical boxplot is O(n): In order to address those issues, this thesis proposes a more formal approach to deriving outlier rules that proved to produce rules which exhibit overall better performance than that of the adjusted boxplot, specially as the contamination level increases. Moreover, those proposed rules have the advantages of being more flexible and possessing lower computational cost than the adjusted boxplot. Furthermore, it is shown that the classical boxplot and many of its modifications or variations are unified by the same concept introduced by this thesis: quartile contrast. The problem with the outlier rules based on quartile contrast, as well as the adjusted boxplot, lies in the fact that they are more suitable for light-tailed data than for heavy-tailed data. For heavy-tailed data, it has been proposed in the literature an outlier rule known as the generalized boxplot. The main problem with the generalized boxplot lies in the fact it is very unstable, since a single outlier might dramatically affect its performance. In order to address this issue, the thesis uses the quartile contrast approach to deriving an outlier rule sensitive to tail heaviness. The experimental analysis show that the tail-heaviness sensitive outlier rule proposed by the thesis indeed presents more stable performance than the generalized boxplot. The performance evaluation of outlier rules is a problem on its own. Therefore, to measure performance of outlier rules, the thesis introduces the GME, a measure that has proved to be more effective to assess performance of outlier rules than the traditional measures involving only false positive rate and false negative rate.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-145141/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-145141/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257442700754944