Uma introdução à Geometria Algébrica Real
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113217/ |
Resumo: | O presente trabalho traz uma apresentação geral da disciplina 'Geometria Algébrica' e depois apresenta ferramentas para lidar com o caso de quando o corpo base é o corpo dos números reais. Os conceitos gerais, como variedades algébricas, topologia de Zariski e anéis de coordenadas, são introduzidos sobre corpos quaisquer e, posteriormente, são enfatizados os aspectos que envolvem a relação de ordem, que tem um papel fundamental quando estamos lidando com o corpo dos números reais. Apresentamos os conceitos de corpo formalmente real e corpo real fechado e suas diversas caracterizações, e provamos resultados clássicos do cálculo diferencial em uma variável para polinômios com coeficientes em um corpo real fechado. Essas ferramentas do cálculo são fundamentais para provarmos o Teorema de Tarski-Seidenberg, o qual é a peça chave da teoria. Esse teorema tem uma forte conexão com a Teoria de Primeira Ordem dos corpos reais fechados (e, portanto, do corpo dos números reais) e nossa prova deste é feita combinando os resultados do cálculo com teoremas clássicos da Teoria dos Modelos. |
id |
USP_3c410c0e4d9689cccd177a0dda7a137c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20230727-113217 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Uma introdução à Geometria Algébrica RealAn Introduction to Real Algebraic GeometryGeometria AlgébricaGeometria Algébrica RealTeoria Dos ModelosO presente trabalho traz uma apresentação geral da disciplina 'Geometria Algébrica' e depois apresenta ferramentas para lidar com o caso de quando o corpo base é o corpo dos números reais. Os conceitos gerais, como variedades algébricas, topologia de Zariski e anéis de coordenadas, são introduzidos sobre corpos quaisquer e, posteriormente, são enfatizados os aspectos que envolvem a relação de ordem, que tem um papel fundamental quando estamos lidando com o corpo dos números reais. Apresentamos os conceitos de corpo formalmente real e corpo real fechado e suas diversas caracterizações, e provamos resultados clássicos do cálculo diferencial em uma variável para polinômios com coeficientes em um corpo real fechado. Essas ferramentas do cálculo são fundamentais para provarmos o Teorema de Tarski-Seidenberg, o qual é a peça chave da teoria. Esse teorema tem uma forte conexão com a Teoria de Primeira Ordem dos corpos reais fechados (e, portanto, do corpo dos números reais) e nossa prova deste é feita combinando os resultados do cálculo com teoremas clássicos da Teoria dos Modelos.The present work shows a general presentation of the discipline called 'Algebraic Geometry' and then presents tools for dealing with the case when the work is done above the field of the real numbers. General concepts, as algebraic varieties, Zariski topology and rings of coordinates, are introduced over any field and, after that, the aspects concerning the order relation, fundamental when we are working with the field of the real numbers, are emphasized. We present the concepts of formally real field and real closed field and their many characterizations and give proofs of classical results from one variable differential calculus for polynomials with coefficients in a real closed field. These tools from calculus are fundamental to our proof of the Tarski-Seidenberg theorem, with is a key result in the theory. This theorem has a strong connection with the first order theory of the real closed fields (and, therefore, of the field of the real numbers) and our proof combines the results of calculus with classical theorems of Model Theory.Biblioteca Digitais de Teses e Dissertações da USPMiraglia Neto, FranciscoHornhardt, Caio De Naday2014-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113217/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-07-27T19:02:05Zoai:teses.usp.br:tde-20230727-113217Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-07-27T19:02:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Uma introdução à Geometria Algébrica Real An Introduction to Real Algebraic Geometry |
title |
Uma introdução à Geometria Algébrica Real |
spellingShingle |
Uma introdução à Geometria Algébrica Real Hornhardt, Caio De Naday Geometria Algébrica Geometria Algébrica Real Teoria Dos Modelos |
title_short |
Uma introdução à Geometria Algébrica Real |
title_full |
Uma introdução à Geometria Algébrica Real |
title_fullStr |
Uma introdução à Geometria Algébrica Real |
title_full_unstemmed |
Uma introdução à Geometria Algébrica Real |
title_sort |
Uma introdução à Geometria Algébrica Real |
author |
Hornhardt, Caio De Naday |
author_facet |
Hornhardt, Caio De Naday |
author_role |
author |
dc.contributor.none.fl_str_mv |
Miraglia Neto, Francisco |
dc.contributor.author.fl_str_mv |
Hornhardt, Caio De Naday |
dc.subject.por.fl_str_mv |
Geometria Algébrica Geometria Algébrica Real Teoria Dos Modelos |
topic |
Geometria Algébrica Geometria Algébrica Real Teoria Dos Modelos |
description |
O presente trabalho traz uma apresentação geral da disciplina 'Geometria Algébrica' e depois apresenta ferramentas para lidar com o caso de quando o corpo base é o corpo dos números reais. Os conceitos gerais, como variedades algébricas, topologia de Zariski e anéis de coordenadas, são introduzidos sobre corpos quaisquer e, posteriormente, são enfatizados os aspectos que envolvem a relação de ordem, que tem um papel fundamental quando estamos lidando com o corpo dos números reais. Apresentamos os conceitos de corpo formalmente real e corpo real fechado e suas diversas caracterizações, e provamos resultados clássicos do cálculo diferencial em uma variável para polinômios com coeficientes em um corpo real fechado. Essas ferramentas do cálculo são fundamentais para provarmos o Teorema de Tarski-Seidenberg, o qual é a peça chave da teoria. Esse teorema tem uma forte conexão com a Teoria de Primeira Ordem dos corpos reais fechados (e, portanto, do corpo dos números reais) e nossa prova deste é feita combinando os resultados do cálculo com teoremas clássicos da Teoria dos Modelos. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113217/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113217/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257218881159168 |