SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.

Detalhes bibliográficos
Autor(a) principal: Martinez, Luciana
Data de Publicação: 1996
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29082017-101955/
Resumo: Recentemente uma rede neural multi-camadas, baseada no algoritmo Back- Propagation, foi proposta para resolver problemas de otimização não lineares. Esta rede tem apresentado bons resultados na solução de problemas não lineares restritos e irrestritos. Este trabalho mostra as facilidades e beneficios da aplicação de técnicas de otimização ao algoritmo de aprendizado desta particular rede neural. O termo momentum, o gradiente com busca linear e o método do gradiente conjugado foram incorporados no esquema de aprendizado desta rede neural. Resultados computacionais são apresentados mostrando as vantagens da incorporação destas técnicas nesta rede. Além disso, para verificar a adequabilidade de uso desta particular rede neural, com algumas modificações incorporadas no algoritmo de aprendizado, na solução de problemas de dimensão maior do que os até então testados, uma aplicação é, resolvida usando este modelo para otimização de um sistema hidroelétrico de potência. O sistema é constituído de uma usina térmica, uma usina hidroelétrica e com a possibilidade de transferência de energia de sistema vizinho. Resultados são apresentados e mostram a utilidade desta abordagem quando comparada com resultados obtidos por técnicas tradicionais.
id USP_3fd32d96aabaa4db932d0116abc251b9
oai_identifier_str oai:teses.usp.br:tde-29082017-101955
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.Solution of optimization problems through artificial neural networksNão disponívelNot availableRecentemente uma rede neural multi-camadas, baseada no algoritmo Back- Propagation, foi proposta para resolver problemas de otimização não lineares. Esta rede tem apresentado bons resultados na solução de problemas não lineares restritos e irrestritos. Este trabalho mostra as facilidades e beneficios da aplicação de técnicas de otimização ao algoritmo de aprendizado desta particular rede neural. O termo momentum, o gradiente com busca linear e o método do gradiente conjugado foram incorporados no esquema de aprendizado desta rede neural. Resultados computacionais são apresentados mostrando as vantagens da incorporação destas técnicas nesta rede. Além disso, para verificar a adequabilidade de uso desta particular rede neural, com algumas modificações incorporadas no algoritmo de aprendizado, na solução de problemas de dimensão maior do que os até então testados, uma aplicação é, resolvida usando este modelo para otimização de um sistema hidroelétrico de potência. O sistema é constituído de uma usina térmica, uma usina hidroelétrica e com a possibilidade de transferência de energia de sistema vizinho. Resultados são apresentados e mostram a utilidade desta abordagem quando comparada com resultados obtidos por técnicas tradicionais.Recently a neural multi-layer network, based on the Back-Propogation algorithm, was proposed for solving nonlinear optimization problems. This network has presented good results in the solution of constrained and unconstrained nonlinear problems. This work shows the feasibilþ and benefits of applying optimization techniques to learning algorithm in this particular neural network. The momentum term, the gradient method whit linear search and conjugate gradient method are incorporate into the learning scheme of this neural network. Computation results are presented showing the advantages of incorporating theses techniques in this network. Besides that, in order to veri$ the adequacy of the use of this particular neural network, with some modifications incorporated in the learning algorithm, in solving the problems of bigger dimension than those already tested, an application is solved using this model for optimizing a hydroelectric potential system. The system is constituted of one thermoelectric plant, one hydroelectric plant and with the possibility of transfer of energy from neighbor system. Results are presented and show the usefulness of this approach when compared with the results obtained by traditional techniques.Biblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinMartinez, Luciana1996-08-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-29082017-101955/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-29082017-101955Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
Solution of optimization problems through artificial neural networks
title SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
spellingShingle SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
Martinez, Luciana
Não disponível
Not available
title_short SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
title_full SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
title_fullStr SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
title_full_unstemmed SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
title_sort SOLUCAO DE PROBLEMAS DE OTIMIZACAO ATRAVES DE REDES NEURAIS MULTI-CAMADAS RECORRENTES.
author Martinez, Luciana
author_facet Martinez, Luciana
author_role author
dc.contributor.none.fl_str_mv Romero, Roseli Aparecida Francelin
dc.contributor.author.fl_str_mv Martinez, Luciana
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Recentemente uma rede neural multi-camadas, baseada no algoritmo Back- Propagation, foi proposta para resolver problemas de otimização não lineares. Esta rede tem apresentado bons resultados na solução de problemas não lineares restritos e irrestritos. Este trabalho mostra as facilidades e beneficios da aplicação de técnicas de otimização ao algoritmo de aprendizado desta particular rede neural. O termo momentum, o gradiente com busca linear e o método do gradiente conjugado foram incorporados no esquema de aprendizado desta rede neural. Resultados computacionais são apresentados mostrando as vantagens da incorporação destas técnicas nesta rede. Além disso, para verificar a adequabilidade de uso desta particular rede neural, com algumas modificações incorporadas no algoritmo de aprendizado, na solução de problemas de dimensão maior do que os até então testados, uma aplicação é, resolvida usando este modelo para otimização de um sistema hidroelétrico de potência. O sistema é constituído de uma usina térmica, uma usina hidroelétrica e com a possibilidade de transferência de energia de sistema vizinho. Resultados são apresentados e mostram a utilidade desta abordagem quando comparada com resultados obtidos por técnicas tradicionais.
publishDate 1996
dc.date.none.fl_str_mv 1996-08-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29082017-101955/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29082017-101955/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257483225071616