Revestimentos ramificados sobre superfícies compactas

Detalhes bibliográficos
Autor(a) principal: Bedoya, Natalia Andrea Viana
Data de Publicação: 2004
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-134343/
Resumo: Um revestimento ramificado 'fi': M -> N de grau d 'PERTENCE A Z IND.+', determina um conjunto de partições de d, o dado de ramificação. Neste trabalho estudamos os seguintes problemas de realização: dada uma superfície compacta e conexa N, d 'PERTENCE A Z IND. +' e uma coleção de partições D de d: 1. Existe um revestimento ramificado conexo de grau d que realize D como dado de ramificação? 2. Dado H 'ESTÁ CONTIDO EM PI IND.1'(N) um subgrupo de índice finito l, existe um revestimento ramificado conexo que realize D e tal que 'FI IND.*'(PI IND.1(M))=H? [EKS] responde à questão 1 quando N é uma superfície fechada diferente de 'S POT.2', e ambas questões quando N='RP POT.2' e l+1.[BGKZ1](geometricamente) e [BGKZ2](algebricamente) respondem à questão 2 para N fechada diferente de 'S POT.2' e de 'RP POT.2'. No capítulo 6 respondemos as duas questões quendo N é uma superfície com bordo.
id USP_42f5206595fcbeed758a7858fda9b662
oai_identifier_str oai:teses.usp.br:tde-20210729-134343
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Revestimentos ramificados sobre superfícies compactasnot availableTopologia AlgébricaUm revestimento ramificado 'fi': M -> N de grau d 'PERTENCE A Z IND.+', determina um conjunto de partições de d, o dado de ramificação. Neste trabalho estudamos os seguintes problemas de realização: dada uma superfície compacta e conexa N, d 'PERTENCE A Z IND. +' e uma coleção de partições D de d: 1. Existe um revestimento ramificado conexo de grau d que realize D como dado de ramificação? 2. Dado H 'ESTÁ CONTIDO EM PI IND.1'(N) um subgrupo de índice finito l, existe um revestimento ramificado conexo que realize D e tal que 'FI IND.*'(PI IND.1(M))=H? [EKS] responde à questão 1 quando N é uma superfície fechada diferente de 'S POT.2', e ambas questões quando N='RP POT.2' e l+1.[BGKZ1](geometricamente) e [BGKZ2](algebricamente) respondem à questão 2 para N fechada diferente de 'S POT.2' e de 'RP POT.2'. No capítulo 6 respondemos as duas questões quendo N é uma superfície com bordo.not availableBiblioteca Digitais de Teses e Dissertações da USPGonçalves, Daciberg LimaBedoya, Natalia Andrea Viana2004-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-134343/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-07T17:44:52Zoai:teses.usp.br:tde-20210729-134343Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-07T17:44:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Revestimentos ramificados sobre superfícies compactas
not available
title Revestimentos ramificados sobre superfícies compactas
spellingShingle Revestimentos ramificados sobre superfícies compactas
Bedoya, Natalia Andrea Viana
Topologia Algébrica
title_short Revestimentos ramificados sobre superfícies compactas
title_full Revestimentos ramificados sobre superfícies compactas
title_fullStr Revestimentos ramificados sobre superfícies compactas
title_full_unstemmed Revestimentos ramificados sobre superfícies compactas
title_sort Revestimentos ramificados sobre superfícies compactas
author Bedoya, Natalia Andrea Viana
author_facet Bedoya, Natalia Andrea Viana
author_role author
dc.contributor.none.fl_str_mv Gonçalves, Daciberg Lima
dc.contributor.author.fl_str_mv Bedoya, Natalia Andrea Viana
dc.subject.por.fl_str_mv Topologia Algébrica
topic Topologia Algébrica
description Um revestimento ramificado 'fi': M -> N de grau d 'PERTENCE A Z IND.+', determina um conjunto de partições de d, o dado de ramificação. Neste trabalho estudamos os seguintes problemas de realização: dada uma superfície compacta e conexa N, d 'PERTENCE A Z IND. +' e uma coleção de partições D de d: 1. Existe um revestimento ramificado conexo de grau d que realize D como dado de ramificação? 2. Dado H 'ESTÁ CONTIDO EM PI IND.1'(N) um subgrupo de índice finito l, existe um revestimento ramificado conexo que realize D e tal que 'FI IND.*'(PI IND.1(M))=H? [EKS] responde à questão 1 quando N é uma superfície fechada diferente de 'S POT.2', e ambas questões quando N='RP POT.2' e l+1.[BGKZ1](geometricamente) e [BGKZ2](algebricamente) respondem à questão 2 para N fechada diferente de 'S POT.2' e de 'RP POT.2'. No capítulo 6 respondemos as duas questões quendo N é uma superfície com bordo.
publishDate 2004
dc.date.none.fl_str_mv 2004-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-134343/
url https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-134343/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256524749012992