Pós-processamento de regras de regressão

Detalhes bibliográficos
Autor(a) principal: Pugliesi, Jaqueline Brigladori
Data de Publicação: 2004
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-111001/
Resumo: O processo de Mineração de Dados inicia-se com o entendimento do domínio da aplicação, considerando aspectos como os objetivos da aplicação e as fontes de dados. Em seguida, é realizado o pré-processamento dos dados e a extração de padrões. Após a etapa de extração de padrões, vem a de pós-processamento, na qual o conhecimento é avaliado quanto a sua qualidade e/ou utilidade a fim de ser utilizado para apoio a algum processo de tomada de decisão. Recentemente, as pesquisas têm se voltado para problemas de regressão, porém a regressão em Mineração de Dados preditiva é uma questão pouco explorada dentro do processo de extração de conhecimento de bases de dados, sendo de grande relevância o estudo de métodos para a exploração de tarefas desse tipo. Alguns trabalhos vêm sendo realizados no Laboratório de Inteligência Computacional (LABIC) em temas relacionados ao processo de Extração de Conhecimento de Bases de Dados e Textos e na construção de um ambiente computacional para extração de conhecimento de dados denominado DlSCOVER. Para apoiar a construção de um modelo de regressão simbólico e o pós-processamento de problemas de regressão foi proposto e desenvolvido o Ambiente \'RTJ^FL, Esse ambiente viabiliza a avaliação de regras de regressão, inclusive disponibilizando estratégias para o cálculo da matriz de contingência e consequente utilização de todas as medidas derivadas dessa matriz para avaliação de regras de regressão; a combinação de regressores homogéneos e heterogéneos para melhorar a precisão dos regressores e a integração e poda de regras de regressão obtidas de diferentes amostras ou algoritmos. Essas funcionalidades do Ambiente íR$í\'I*PE incrementam a potencialidade do Ambiente DlSCOVER quanto ao tratamento de regressão.
id USP_440b649c7d881478362ec4868644fc48
oai_identifier_str oai:teses.usp.br:tde-20082015-111001
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Pós-processamento de regras de regressãoPost-processing regression rulesNão disponívelNot availableO processo de Mineração de Dados inicia-se com o entendimento do domínio da aplicação, considerando aspectos como os objetivos da aplicação e as fontes de dados. Em seguida, é realizado o pré-processamento dos dados e a extração de padrões. Após a etapa de extração de padrões, vem a de pós-processamento, na qual o conhecimento é avaliado quanto a sua qualidade e/ou utilidade a fim de ser utilizado para apoio a algum processo de tomada de decisão. Recentemente, as pesquisas têm se voltado para problemas de regressão, porém a regressão em Mineração de Dados preditiva é uma questão pouco explorada dentro do processo de extração de conhecimento de bases de dados, sendo de grande relevância o estudo de métodos para a exploração de tarefas desse tipo. Alguns trabalhos vêm sendo realizados no Laboratório de Inteligência Computacional (LABIC) em temas relacionados ao processo de Extração de Conhecimento de Bases de Dados e Textos e na construção de um ambiente computacional para extração de conhecimento de dados denominado DlSCOVER. Para apoiar a construção de um modelo de regressão simbólico e o pós-processamento de problemas de regressão foi proposto e desenvolvido o Ambiente \'RTJ^FL, Esse ambiente viabiliza a avaliação de regras de regressão, inclusive disponibilizando estratégias para o cálculo da matriz de contingência e consequente utilização de todas as medidas derivadas dessa matriz para avaliação de regras de regressão; a combinação de regressores homogéneos e heterogéneos para melhorar a precisão dos regressores e a integração e poda de regras de regressão obtidas de diferentes amostras ou algoritmos. Essas funcionalidades do Ambiente íR$í\'I*PE incrementam a potencialidade do Ambiente DlSCOVER quanto ao tratamento de regressão.Data Mining process begins with the understanding of the application domain, considering aspects as application objectives and data sources. Then, the data pre-processing and pattern extraction is realized. After the pattern extraction stage, one proceeds with the post-processing, in which the knowledge is evaluated as regards its quality and/or usefulness in order to use this knowledge to support a decision making process. Recently, much attention has been given to regression problems. However, regression in predictive Data Mining is a little explored subject in the knowledge discovery from database process, what makes the study of exploration methods very relevant. Some work in areas related to the Knowledge Discovery of Data and Text Bases process have been accomplished at LABIC (Laboratório de Inteligência Computacional) which motivated the construction of a computational environment for knowledge extraction called DlSCOVER. The WfnPFL environment was proposed and developed to aim the symbolic regression model construction and the regression problems post-processing, This environment makes possible the evaluation of regression rules, providing strategies for contingency table calculation and the subsequent utilization of ali measures derived from this table for regression rules evaluation. Moreover, the system also provides the combination of homogeneous and heterogeneous regressors to improve the regressor precision and the integration and pruning of regression rules obtained from different samples or algorithms. These functionalities of Ú&&PE increase the DlSCOVER potentiality in relation to regression treatmet.Biblioteca Digitais de Teses e Dissertações da USPRezende, Solange OliveiraPugliesi, Jaqueline Brigladori2004-05-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-111001/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-20082015-111001Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Pós-processamento de regras de regressão
Post-processing regression rules
title Pós-processamento de regras de regressão
spellingShingle Pós-processamento de regras de regressão
Pugliesi, Jaqueline Brigladori
Não disponível
Not available
title_short Pós-processamento de regras de regressão
title_full Pós-processamento de regras de regressão
title_fullStr Pós-processamento de regras de regressão
title_full_unstemmed Pós-processamento de regras de regressão
title_sort Pós-processamento de regras de regressão
author Pugliesi, Jaqueline Brigladori
author_facet Pugliesi, Jaqueline Brigladori
author_role author
dc.contributor.none.fl_str_mv Rezende, Solange Oliveira
dc.contributor.author.fl_str_mv Pugliesi, Jaqueline Brigladori
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description O processo de Mineração de Dados inicia-se com o entendimento do domínio da aplicação, considerando aspectos como os objetivos da aplicação e as fontes de dados. Em seguida, é realizado o pré-processamento dos dados e a extração de padrões. Após a etapa de extração de padrões, vem a de pós-processamento, na qual o conhecimento é avaliado quanto a sua qualidade e/ou utilidade a fim de ser utilizado para apoio a algum processo de tomada de decisão. Recentemente, as pesquisas têm se voltado para problemas de regressão, porém a regressão em Mineração de Dados preditiva é uma questão pouco explorada dentro do processo de extração de conhecimento de bases de dados, sendo de grande relevância o estudo de métodos para a exploração de tarefas desse tipo. Alguns trabalhos vêm sendo realizados no Laboratório de Inteligência Computacional (LABIC) em temas relacionados ao processo de Extração de Conhecimento de Bases de Dados e Textos e na construção de um ambiente computacional para extração de conhecimento de dados denominado DlSCOVER. Para apoiar a construção de um modelo de regressão simbólico e o pós-processamento de problemas de regressão foi proposto e desenvolvido o Ambiente \'RTJ^FL, Esse ambiente viabiliza a avaliação de regras de regressão, inclusive disponibilizando estratégias para o cálculo da matriz de contingência e consequente utilização de todas as medidas derivadas dessa matriz para avaliação de regras de regressão; a combinação de regressores homogéneos e heterogéneos para melhorar a precisão dos regressores e a integração e poda de regras de regressão obtidas de diferentes amostras ou algoritmos. Essas funcionalidades do Ambiente íR$í\'I*PE incrementam a potencialidade do Ambiente DlSCOVER quanto ao tratamento de regressão.
publishDate 2004
dc.date.none.fl_str_mv 2004-05-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-111001/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082015-111001/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257178894761984