Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos

Detalhes bibliográficos
Autor(a) principal: Horst, Paulo Sergio
Data de Publicação: 1999
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09032018-135652/
Resumo: O avanço de algumas áreas como computação e comunicação de dados, bem como a busca incessante pelo domínio das informações, contribui para aumentar cada vez mais as pesquisas relacionadas com aquisição de conhecimento, tema central da área de Inteligência Artificial. A aquisição implícita de conhecimento é realizada utilizando-se algoritmos de Aprendizado de Máquina. No caso de algoritmos simbólicos supervisionados, o conhecimento adquirido é representado em estruturas lógicas, tais como regras do tipo se então, que são entendíveis pelo ser humano. Quando o número de regras é elevado, ou as regras consideram muitas condições no seu corpo, torna-se difícil, ao ser humano, a análise desse conhecimento. Uma solução para esta questão é o desenvolvimento de boas medidas de avaliação de regras. Independentemente da quantidade de regras, essas medidas ajudam a selecionar aquelas que são mais úteis e interessantes, pois parte do conhecimento adquirido dos exemplos pode ser muito óbvio ou irrelevante. Neste trabalho são discutidas algumas medidas propostas na literatura, com a finalidade de auxiliar o usuário no entendimento e utilização proveitosa do conhecimento adquirido. Com base nos estudos realizados foi projetado e implementado um sistema computacional, denominado 7.0 system , para auxiliar na avaliação dessas regras de conhecimento. 0 RQsystem foi desenvolvido na linguagem de programação lógica Prolog e consiste de dois módulos principais. O primeiro é responsável pelo pré-processamento dos dados de entrada. O segundo módulo é responsável por fornecer diversar informações pré-definidas no sistema ou construídas e formuladas pelo usuário. o TZQsystern está descrito neste trabalho utilizando um pequeno conjunto de dados do mundo real e as regras geradas pelos algoritmos de Aprendizado de Máquina C.111-2 e C4.5. Esse sistema tem características interessantes que lhe conferem uma boa utilidade tanto na avaliação de regras quanto no estudo de outras questões relacionadas com as regras. Extensões futuras do sistema poderão ser particularmente úteis em Data Mining.
id USP_46012d362f8860cad89c56a66f4b4822
oai_identifier_str oai:teses.usp.br:tde-09032018-135652
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando ExemplosNot availableNão disponívelNot availableO avanço de algumas áreas como computação e comunicação de dados, bem como a busca incessante pelo domínio das informações, contribui para aumentar cada vez mais as pesquisas relacionadas com aquisição de conhecimento, tema central da área de Inteligência Artificial. A aquisição implícita de conhecimento é realizada utilizando-se algoritmos de Aprendizado de Máquina. No caso de algoritmos simbólicos supervisionados, o conhecimento adquirido é representado em estruturas lógicas, tais como regras do tipo se então, que são entendíveis pelo ser humano. Quando o número de regras é elevado, ou as regras consideram muitas condições no seu corpo, torna-se difícil, ao ser humano, a análise desse conhecimento. Uma solução para esta questão é o desenvolvimento de boas medidas de avaliação de regras. Independentemente da quantidade de regras, essas medidas ajudam a selecionar aquelas que são mais úteis e interessantes, pois parte do conhecimento adquirido dos exemplos pode ser muito óbvio ou irrelevante. Neste trabalho são discutidas algumas medidas propostas na literatura, com a finalidade de auxiliar o usuário no entendimento e utilização proveitosa do conhecimento adquirido. Com base nos estudos realizados foi projetado e implementado um sistema computacional, denominado 7.0 system , para auxiliar na avaliação dessas regras de conhecimento. 0 RQsystem foi desenvolvido na linguagem de programação lógica Prolog e consiste de dois módulos principais. O primeiro é responsável pelo pré-processamento dos dados de entrada. O segundo módulo é responsável por fornecer diversar informações pré-definidas no sistema ou construídas e formuladas pelo usuário. o TZQsystern está descrito neste trabalho utilizando um pequeno conjunto de dados do mundo real e as regras geradas pelos algoritmos de Aprendizado de Máquina C.111-2 e C4.5. Esse sistema tem características interessantes que lhe conferem uma boa utilidade tanto na avaliação de regras quanto no estudo de outras questões relacionadas com as regras. Extensões futuras do sistema poderão ser particularmente úteis em Data Mining.The field of Machine Learning (ML) is concerned with the development of computational methods to implement various forms of learning, in particular methods capable of inducing knowledge from examples, i.e. determining a concept description from a set of provided concept examples. Learning algorithms can generally be classified into one of two,major categories: black-box methods and knowledge-oriented methods. The description produced by the black-box approach cannot be easily interpreted by the user and does not provide explanation of the recognition process. On the other hand, knowledgeoriented methods aim at creating symbolic knowledge structures that satisfy the principie of comprehensibility, providing explanation of the recognition process. In this work we consider knowledge-oriented ML algorithms that express the discovered concept in the form of if-then rules. An important problem is related to the reliability, quality and interestingness of the rules generated by these algorithms. Still, when the quantity of mie generated is lane, the selection of good rules can became a serious problem for the human user. In this work we present and discuss several measures that can provide useful support in interpreting and ranking the rules generated by Machine Learning algorithms. These measures were implemented in a computational system called R.Qsystem. The system uses as input a common file format for data sets and features description which is independent of the ML algorithm used to generate the if-then rules. The file format for the rules generated is algorithm dependent. The R.Qsystem has been implemented in Prolog and it is query-centered, permitting the user to specify any constraints on the desired result of a query. The user can either specify the constraints in terms of procedures already implemented in the system or can define his/her new procedures to be considered as new constraints. The RQsystem is described in this work using a small real world data set and the rules generated by CAI2 and C4.5 Machine Learning algorithms. Future extensions to the system that, we consider will be particularly useful in Data Mining are also discussed.Biblioteca Digitais de Teses e Dissertações da USPMonard, Maria CarolinaHorst, Paulo Sergio1999-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-09032018-135652/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-09032018-135652Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
Not available
title Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
spellingShingle Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
Horst, Paulo Sergio
Não disponível
Not available
title_short Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
title_full Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
title_fullStr Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
title_full_unstemmed Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
title_sort Avaliação do Conhecimento Adquirido por Algoritmos de Aprendizado de Máquina Utilizando Exemplos
author Horst, Paulo Sergio
author_facet Horst, Paulo Sergio
author_role author
dc.contributor.none.fl_str_mv Monard, Maria Carolina
dc.contributor.author.fl_str_mv Horst, Paulo Sergio
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description O avanço de algumas áreas como computação e comunicação de dados, bem como a busca incessante pelo domínio das informações, contribui para aumentar cada vez mais as pesquisas relacionadas com aquisição de conhecimento, tema central da área de Inteligência Artificial. A aquisição implícita de conhecimento é realizada utilizando-se algoritmos de Aprendizado de Máquina. No caso de algoritmos simbólicos supervisionados, o conhecimento adquirido é representado em estruturas lógicas, tais como regras do tipo se então, que são entendíveis pelo ser humano. Quando o número de regras é elevado, ou as regras consideram muitas condições no seu corpo, torna-se difícil, ao ser humano, a análise desse conhecimento. Uma solução para esta questão é o desenvolvimento de boas medidas de avaliação de regras. Independentemente da quantidade de regras, essas medidas ajudam a selecionar aquelas que são mais úteis e interessantes, pois parte do conhecimento adquirido dos exemplos pode ser muito óbvio ou irrelevante. Neste trabalho são discutidas algumas medidas propostas na literatura, com a finalidade de auxiliar o usuário no entendimento e utilização proveitosa do conhecimento adquirido. Com base nos estudos realizados foi projetado e implementado um sistema computacional, denominado 7.0 system , para auxiliar na avaliação dessas regras de conhecimento. 0 RQsystem foi desenvolvido na linguagem de programação lógica Prolog e consiste de dois módulos principais. O primeiro é responsável pelo pré-processamento dos dados de entrada. O segundo módulo é responsável por fornecer diversar informações pré-definidas no sistema ou construídas e formuladas pelo usuário. o TZQsystern está descrito neste trabalho utilizando um pequeno conjunto de dados do mundo real e as regras geradas pelos algoritmos de Aprendizado de Máquina C.111-2 e C4.5. Esse sistema tem características interessantes que lhe conferem uma boa utilidade tanto na avaliação de regras quanto no estudo de outras questões relacionadas com as regras. Extensões futuras do sistema poderão ser particularmente úteis em Data Mining.
publishDate 1999
dc.date.none.fl_str_mv 1999-10-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09032018-135652/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09032018-135652/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256827037745152