As álgebras plena de Colombeau e de Aragona
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-28012020-182713/ |
Resumo: | As álgebras de funções generalizadas de Colombeau são ambientes naturais em que equa- ções lineares e não lineares podem ser tratadas. O objetivo desta tese é continuar desenvol- vendo a teoria das funções generalizadas de Colombeau, assim como construir novas álgebras diferenciais em que as distribuições de Schwartz podem ser mergulhadas. No primeiro capítulo, damos uma introdução desta teoria e relatamos os principais re- sultados que serão imporantes para o desenvolvimento desta tese. As provas de muitos re- sultados são incluídas para a facilidade do leitor e para fazer o texto mais acessível. No segundo capítulo, estudamos os ideiais maximais da álgebra plena de funções gene- ralizadas de Colomebau e classificamos completamente estes ideiais maximais. Introduzimos as álgebras de Aragona e usamos um processo de compactificação, similiar à de Stone - Check, introduzida por Khelif - Scarpalezos para conseguir esta classificação. Em particular, completamos a classificação de Khelif - Scarpalezos obtida para as álgebras simplificadas. Este capítulo serve também de base para boa parte da tese. No capítulo 3, generalizamos as noções de conjuntos internos e membranas, introduzidas por Aragona - Fernandes -Juriaans -Oberguggenberger - Vernaev, para o contexto da álgebra plena. Vários resultados então generalizados para o contexto da álgebra plena. Se f H() é uma função holomorfa clássica, Rf C o conjunto de zeros da f e Gf Rf K o conjunto de zeros generalizados da f , começamos relacionando estes dois conjuntos usando as teorias mais recentes desenvolvidas na áreas. Isto é feito no capítulo 4. |
id |
USP_4a32746dfc715a2afdc8be5349e7151b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28012020-182713 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
As álgebras plena de Colombeau e de AragonaThe full algebras of Colombeau and AragonaÁlgebra de AragonaAragona algebraConjunto internoFunções holomorfa generalizadasGeneralized holomorphic functionsInternal setAs álgebras de funções generalizadas de Colombeau são ambientes naturais em que equa- ções lineares e não lineares podem ser tratadas. O objetivo desta tese é continuar desenvol- vendo a teoria das funções generalizadas de Colombeau, assim como construir novas álgebras diferenciais em que as distribuições de Schwartz podem ser mergulhadas. No primeiro capítulo, damos uma introdução desta teoria e relatamos os principais re- sultados que serão imporantes para o desenvolvimento desta tese. As provas de muitos re- sultados são incluídas para a facilidade do leitor e para fazer o texto mais acessível. No segundo capítulo, estudamos os ideiais maximais da álgebra plena de funções gene- ralizadas de Colomebau e classificamos completamente estes ideiais maximais. Introduzimos as álgebras de Aragona e usamos um processo de compactificação, similiar à de Stone - Check, introduzida por Khelif - Scarpalezos para conseguir esta classificação. Em particular, completamos a classificação de Khelif - Scarpalezos obtida para as álgebras simplificadas. Este capítulo serve também de base para boa parte da tese. No capítulo 3, generalizamos as noções de conjuntos internos e membranas, introduzidas por Aragona - Fernandes -Juriaans -Oberguggenberger - Vernaev, para o contexto da álgebra plena. Vários resultados então generalizados para o contexto da álgebra plena. Se f H() é uma função holomorfa clássica, Rf C o conjunto de zeros da f e Gf Rf K o conjunto de zeros generalizados da f , começamos relacionando estes dois conjuntos usando as teorias mais recentes desenvolvidas na áreas. Isto é feito no capítulo 4.Colombeau generalized functions are natural environment in which linear and nonlinear relationship can be treated. This PhD thesis aims to continue the developing the Colombeau theory of generalized functions, as well as building new differential algebras in order to use a monomorphism with Schwartz distributions can be dipped. The first chapter of this thesis brings an introduction to the Colombeau theory and describes the main results that have been obtained in the literature, which are important for the development, we describe the main results - which are important for the development of this thesis. In order to help the reader and to make the text more accessible, mathematical evidence of these results are also presented in this chapter. In the second chapter, it was studied the maximal ideal of full Colombeau algebra of generalized functions and completely classified these ideals. We intro- duced the Aragona algebras and used a compactification process similar to Stone - Check, which was introduced by Khelif - Scarpalezos to obtain this classification. In particular, we completed a classification of Khelif - Scarpalezos that is applied for simplified algebras. This chapter also serves as the basis for this thesis. In chapter 3, we generalize the internal sets and membranes, introduced by Aragona - Fernandes -Juriaans -Oberguggenberger - Ver- naev, for the context of full algebra . Several results are then generalized to the context of full algebra. If f H() is a classic holomorphic function, Rf C the zero set of f and Gf Rf K the set of generalized zeros from f , we then related these two sets using the latest theories developed in this field and this work is presented in the Chapter 4.Biblioteca Digitais de Teses e Dissertações da USPJuriaans, Orlando StanleySilva, Jailson Calado da2019-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-28012020-182713/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-04-22T18:13:01Zoai:teses.usp.br:tde-28012020-182713Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-04-22T18:13:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
As álgebras plena de Colombeau e de Aragona The full algebras of Colombeau and Aragona |
title |
As álgebras plena de Colombeau e de Aragona |
spellingShingle |
As álgebras plena de Colombeau e de Aragona Silva, Jailson Calado da Álgebra de Aragona Aragona algebra Conjunto interno Funções holomorfa generalizadas Generalized holomorphic functions Internal set |
title_short |
As álgebras plena de Colombeau e de Aragona |
title_full |
As álgebras plena de Colombeau e de Aragona |
title_fullStr |
As álgebras plena de Colombeau e de Aragona |
title_full_unstemmed |
As álgebras plena de Colombeau e de Aragona |
title_sort |
As álgebras plena de Colombeau e de Aragona |
author |
Silva, Jailson Calado da |
author_facet |
Silva, Jailson Calado da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Juriaans, Orlando Stanley |
dc.contributor.author.fl_str_mv |
Silva, Jailson Calado da |
dc.subject.por.fl_str_mv |
Álgebra de Aragona Aragona algebra Conjunto interno Funções holomorfa generalizadas Generalized holomorphic functions Internal set |
topic |
Álgebra de Aragona Aragona algebra Conjunto interno Funções holomorfa generalizadas Generalized holomorphic functions Internal set |
description |
As álgebras de funções generalizadas de Colombeau são ambientes naturais em que equa- ções lineares e não lineares podem ser tratadas. O objetivo desta tese é continuar desenvol- vendo a teoria das funções generalizadas de Colombeau, assim como construir novas álgebras diferenciais em que as distribuições de Schwartz podem ser mergulhadas. No primeiro capítulo, damos uma introdução desta teoria e relatamos os principais re- sultados que serão imporantes para o desenvolvimento desta tese. As provas de muitos re- sultados são incluídas para a facilidade do leitor e para fazer o texto mais acessível. No segundo capítulo, estudamos os ideiais maximais da álgebra plena de funções gene- ralizadas de Colomebau e classificamos completamente estes ideiais maximais. Introduzimos as álgebras de Aragona e usamos um processo de compactificação, similiar à de Stone - Check, introduzida por Khelif - Scarpalezos para conseguir esta classificação. Em particular, completamos a classificação de Khelif - Scarpalezos obtida para as álgebras simplificadas. Este capítulo serve também de base para boa parte da tese. No capítulo 3, generalizamos as noções de conjuntos internos e membranas, introduzidas por Aragona - Fernandes -Juriaans -Oberguggenberger - Vernaev, para o contexto da álgebra plena. Vários resultados então generalizados para o contexto da álgebra plena. Se f H() é uma função holomorfa clássica, Rf C o conjunto de zeros da f e Gf Rf K o conjunto de zeros generalizados da f , começamos relacionando estes dois conjuntos usando as teorias mais recentes desenvolvidas na áreas. Isto é feito no capítulo 4. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-28012020-182713/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-28012020-182713/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257424646373376 |