Modularity in belief change of description logic bases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/ |
Resumo: | Ontologies written in OWL and OWL 2 are one of the most prominent tools in Knowledge Representation nowadays. They allow the sharing of knowledge of a domain unambiguously and operate with implicit knowledge using reasoning algorithms. However, ontologies can become large and very complex, hindering their maintenance and evolution. One complicating factor is that a small change can trigger unexpected and unwanted consequences. Solutions to sound maintenance have emerged separately in Belief Change and Ontology Repair. Despite having distinct views, proposals in both fields often rely on the Description Logics, which underpin OWL and OWL 2. Hence, the approaches from both fields for repairing ontologies are very similar at the algorithmic level. Consequently, both areas need to address the high complexity of the debugging problem and cope with the exponential number of correct outcomes. There are studies in Ontology Repair which use modularity techniques to extract smaller subsets of the ontology which are sufficient to fix a particular consequence. Still, the effect of modules on the Belief Change framework is poorly understood: either the postulates or the mechanisms which select the final result might change when a module replaces the input. Also, the impact on computational performance was only assessed in small corpora and with few variations in parameters. Moreover, the number of outcomes is still exponential, and existing solutions rarely provide means to mitigate this issue. In this context, this thesis provides a clearer understanding of the effects of modularity in the theoretical framework that guarantees rational (sound) changes. Also, it evaluates the performance impact of modularity empirically using locality-based modules in a broader setting. Additionally, it also investigates how modules can aid users to filter and select the best results efficiently. A category of modules is identified for which the postulates from Belief Change remain the same, and under mild conditions, the result is unchanged. The analysis of experimental data shows that modules are beneficial for performance, often displaying gains of orders of magnitude. Also, the methods proposed to aid in the selection of repairs are shown to be competitive with existing approaches. |
id |
USP_4ade442621186ec6c9f55ea26d4a4773 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19032020-043422 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modularity in belief change of description logic basesModularidade em revisão de crenças em lógicas de descriçãoBelief changeModularisação de ontologiasOntology modularisationOntology repairReparo de ontologiasRevisão de crençasOntologies written in OWL and OWL 2 are one of the most prominent tools in Knowledge Representation nowadays. They allow the sharing of knowledge of a domain unambiguously and operate with implicit knowledge using reasoning algorithms. However, ontologies can become large and very complex, hindering their maintenance and evolution. One complicating factor is that a small change can trigger unexpected and unwanted consequences. Solutions to sound maintenance have emerged separately in Belief Change and Ontology Repair. Despite having distinct views, proposals in both fields often rely on the Description Logics, which underpin OWL and OWL 2. Hence, the approaches from both fields for repairing ontologies are very similar at the algorithmic level. Consequently, both areas need to address the high complexity of the debugging problem and cope with the exponential number of correct outcomes. There are studies in Ontology Repair which use modularity techniques to extract smaller subsets of the ontology which are sufficient to fix a particular consequence. Still, the effect of modules on the Belief Change framework is poorly understood: either the postulates or the mechanisms which select the final result might change when a module replaces the input. Also, the impact on computational performance was only assessed in small corpora and with few variations in parameters. Moreover, the number of outcomes is still exponential, and existing solutions rarely provide means to mitigate this issue. In this context, this thesis provides a clearer understanding of the effects of modularity in the theoretical framework that guarantees rational (sound) changes. Also, it evaluates the performance impact of modularity empirically using locality-based modules in a broader setting. Additionally, it also investigates how modules can aid users to filter and select the best results efficiently. A category of modules is identified for which the postulates from Belief Change remain the same, and under mild conditions, the result is unchanged. The analysis of experimental data shows that modules are beneficial for performance, often displaying gains of orders of magnitude. Also, the methods proposed to aid in the selection of repairs are shown to be competitive with existing approaches.Ontologias escritas em OWL e OWL 2 são uma das ferramentas mais importantes em Representação do Conhecimento atualmente. Elas permitem o compartilhamento de conhecimento de um domínio sem ambiguidade e operar com conhecimento implícito usando motores de inferência. No entanto, as ontologias podem se tornar grandes e muito complexas, dificultando sua manutenção e evolução. Um fator complicador é que uma pequena mudança pode desencadear consequências inesperadas e indesejadas. Soluções para manutenção correta surgiram paralelamente em Revisão de Crenças e em Reparo de Ontologias. Apesar de terem visões distintas, as propostas em ambos os campos se baseiam nas Lógicas de Descrição, que sustentam OWL e OWL 2. Portanto, as abordagens de ambos os campos para reparar ontologias são muito semelhantes no nível algorítmico. Consequentemente, ambas as áreas precisam lidar com a alta complexidade do problema de depuração e com o número exponencial de resultados válidos. Há estudos em Reparo de Ontologias que usam técnicas de modularisação para extrair subconjuntos menores da ontologia, suficientes para corrigir uma consequência específica. Ainda assim, os efeitos dos módulos no arcabouço de Revisão de Crenças são pouco estudados: tanto os postulados quanto os mecanismos que selecionam o resultado final podem mudar quando um módulo substitui a entrada. Além disso, o impacto no desempenho computacional foi avaliado apenas em corpora pequenos e com pouca variação de parâmetros. E mais, o número de resultados ainda é exponencial e as soluções existentes raramente fornecem meios para mitigar esse problema. Nesse sentido, esta tese provê uma visão mais clara dos efeitos da modularidade no arcabouço teórico que garante mudanças racionais (consistentes). Também avalia-se empiricamente o impacto da modularidade no desempenho usando módulos baseados em localidade em um cenário mais amplo. Adicionalmente, investiga-se como os módulos podem ajudar os usuários a filtrar e selecionar os melhores resultados com eficiência. Identifica-se uma categoria de módulos para os quais os postulados de Revisão de Crenças permanecem os mesmos e, em condições moderadas, o resultado permanece inalterado. A análise dos dados experimentais mostra que os módulos são benéficos para o desempenho, muitas vezes exibindo ganhos de ordens de magnitude. Além disso, os métodos propostos para auxiliar na seleção de reparos provaram ser competitivos com os métodos existentes.Biblioteca Digitais de Teses e Dissertações da USPWassermann, RenataGuimarães, Ricardo Ferreira2020-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-03-20T00:14:02Zoai:teses.usp.br:tde-19032020-043422Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-20T00:14:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modularity in belief change of description logic bases Modularidade em revisão de crenças em lógicas de descrição |
title |
Modularity in belief change of description logic bases |
spellingShingle |
Modularity in belief change of description logic bases Guimarães, Ricardo Ferreira Belief change Modularisação de ontologias Ontology modularisation Ontology repair Reparo de ontologias Revisão de crenças |
title_short |
Modularity in belief change of description logic bases |
title_full |
Modularity in belief change of description logic bases |
title_fullStr |
Modularity in belief change of description logic bases |
title_full_unstemmed |
Modularity in belief change of description logic bases |
title_sort |
Modularity in belief change of description logic bases |
author |
Guimarães, Ricardo Ferreira |
author_facet |
Guimarães, Ricardo Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Wassermann, Renata |
dc.contributor.author.fl_str_mv |
Guimarães, Ricardo Ferreira |
dc.subject.por.fl_str_mv |
Belief change Modularisação de ontologias Ontology modularisation Ontology repair Reparo de ontologias Revisão de crenças |
topic |
Belief change Modularisação de ontologias Ontology modularisation Ontology repair Reparo de ontologias Revisão de crenças |
description |
Ontologies written in OWL and OWL 2 are one of the most prominent tools in Knowledge Representation nowadays. They allow the sharing of knowledge of a domain unambiguously and operate with implicit knowledge using reasoning algorithms. However, ontologies can become large and very complex, hindering their maintenance and evolution. One complicating factor is that a small change can trigger unexpected and unwanted consequences. Solutions to sound maintenance have emerged separately in Belief Change and Ontology Repair. Despite having distinct views, proposals in both fields often rely on the Description Logics, which underpin OWL and OWL 2. Hence, the approaches from both fields for repairing ontologies are very similar at the algorithmic level. Consequently, both areas need to address the high complexity of the debugging problem and cope with the exponential number of correct outcomes. There are studies in Ontology Repair which use modularity techniques to extract smaller subsets of the ontology which are sufficient to fix a particular consequence. Still, the effect of modules on the Belief Change framework is poorly understood: either the postulates or the mechanisms which select the final result might change when a module replaces the input. Also, the impact on computational performance was only assessed in small corpora and with few variations in parameters. Moreover, the number of outcomes is still exponential, and existing solutions rarely provide means to mitigate this issue. In this context, this thesis provides a clearer understanding of the effects of modularity in the theoretical framework that guarantees rational (sound) changes. Also, it evaluates the performance impact of modularity empirically using locality-based modules in a broader setting. Additionally, it also investigates how modules can aid users to filter and select the best results efficiently. A category of modules is identified for which the postulates from Belief Change remain the same, and under mild conditions, the result is unchanged. The analysis of experimental data shows that modules are beneficial for performance, often displaying gains of orders of magnitude. Also, the methods proposed to aid in the selection of repairs are shown to be competitive with existing approaches. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257164722208768 |