Modularity in belief change of description logic bases

Detalhes bibliográficos
Autor(a) principal: Guimarães, Ricardo Ferreira
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/
Resumo: Ontologies written in OWL and OWL 2 are one of the most prominent tools in Knowledge Representation nowadays. They allow the sharing of knowledge of a domain unambiguously and operate with implicit knowledge using reasoning algorithms. However, ontologies can become large and very complex, hindering their maintenance and evolution. One complicating factor is that a small change can trigger unexpected and unwanted consequences. Solutions to sound maintenance have emerged separately in Belief Change and Ontology Repair. Despite having distinct views, proposals in both fields often rely on the Description Logics, which underpin OWL and OWL 2. Hence, the approaches from both fields for repairing ontologies are very similar at the algorithmic level. Consequently, both areas need to address the high complexity of the debugging problem and cope with the exponential number of correct outcomes. There are studies in Ontology Repair which use modularity techniques to extract smaller subsets of the ontology which are sufficient to fix a particular consequence. Still, the effect of modules on the Belief Change framework is poorly understood: either the postulates or the mechanisms which select the final result might change when a module replaces the input. Also, the impact on computational performance was only assessed in small corpora and with few variations in parameters. Moreover, the number of outcomes is still exponential, and existing solutions rarely provide means to mitigate this issue. In this context, this thesis provides a clearer understanding of the effects of modularity in the theoretical framework that guarantees rational (sound) changes. Also, it evaluates the performance impact of modularity empirically using locality-based modules in a broader setting. Additionally, it also investigates how modules can aid users to filter and select the best results efficiently. A category of modules is identified for which the postulates from Belief Change remain the same, and under mild conditions, the result is unchanged. The analysis of experimental data shows that modules are beneficial for performance, often displaying gains of orders of magnitude. Also, the methods proposed to aid in the selection of repairs are shown to be competitive with existing approaches.
id USP_4ade442621186ec6c9f55ea26d4a4773
oai_identifier_str oai:teses.usp.br:tde-19032020-043422
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modularity in belief change of description logic basesModularidade em revisão de crenças em lógicas de descriçãoBelief changeModularisação de ontologiasOntology modularisationOntology repairReparo de ontologiasRevisão de crençasOntologies written in OWL and OWL 2 are one of the most prominent tools in Knowledge Representation nowadays. They allow the sharing of knowledge of a domain unambiguously and operate with implicit knowledge using reasoning algorithms. However, ontologies can become large and very complex, hindering their maintenance and evolution. One complicating factor is that a small change can trigger unexpected and unwanted consequences. Solutions to sound maintenance have emerged separately in Belief Change and Ontology Repair. Despite having distinct views, proposals in both fields often rely on the Description Logics, which underpin OWL and OWL 2. Hence, the approaches from both fields for repairing ontologies are very similar at the algorithmic level. Consequently, both areas need to address the high complexity of the debugging problem and cope with the exponential number of correct outcomes. There are studies in Ontology Repair which use modularity techniques to extract smaller subsets of the ontology which are sufficient to fix a particular consequence. Still, the effect of modules on the Belief Change framework is poorly understood: either the postulates or the mechanisms which select the final result might change when a module replaces the input. Also, the impact on computational performance was only assessed in small corpora and with few variations in parameters. Moreover, the number of outcomes is still exponential, and existing solutions rarely provide means to mitigate this issue. In this context, this thesis provides a clearer understanding of the effects of modularity in the theoretical framework that guarantees rational (sound) changes. Also, it evaluates the performance impact of modularity empirically using locality-based modules in a broader setting. Additionally, it also investigates how modules can aid users to filter and select the best results efficiently. A category of modules is identified for which the postulates from Belief Change remain the same, and under mild conditions, the result is unchanged. The analysis of experimental data shows that modules are beneficial for performance, often displaying gains of orders of magnitude. Also, the methods proposed to aid in the selection of repairs are shown to be competitive with existing approaches.Ontologias escritas em OWL e OWL 2 são uma das ferramentas mais importantes em Representação do Conhecimento atualmente. Elas permitem o compartilhamento de conhecimento de um domínio sem ambiguidade e operar com conhecimento implícito usando motores de inferência. No entanto, as ontologias podem se tornar grandes e muito complexas, dificultando sua manutenção e evolução. Um fator complicador é que uma pequena mudança pode desencadear consequências inesperadas e indesejadas. Soluções para manutenção correta surgiram paralelamente em Revisão de Crenças e em Reparo de Ontologias. Apesar de terem visões distintas, as propostas em ambos os campos se baseiam nas Lógicas de Descrição, que sustentam OWL e OWL 2. Portanto, as abordagens de ambos os campos para reparar ontologias são muito semelhantes no nível algorítmico. Consequentemente, ambas as áreas precisam lidar com a alta complexidade do problema de depuração e com o número exponencial de resultados válidos. Há estudos em Reparo de Ontologias que usam técnicas de modularisação para extrair subconjuntos menores da ontologia, suficientes para corrigir uma consequência específica. Ainda assim, os efeitos dos módulos no arcabouço de Revisão de Crenças são pouco estudados: tanto os postulados quanto os mecanismos que selecionam o resultado final podem mudar quando um módulo substitui a entrada. Além disso, o impacto no desempenho computacional foi avaliado apenas em corpora pequenos e com pouca variação de parâmetros. E mais, o número de resultados ainda é exponencial e as soluções existentes raramente fornecem meios para mitigar esse problema. Nesse sentido, esta tese provê uma visão mais clara dos efeitos da modularidade no arcabouço teórico que garante mudanças racionais (consistentes). Também avalia-se empiricamente o impacto da modularidade no desempenho usando módulos baseados em localidade em um cenário mais amplo. Adicionalmente, investiga-se como os módulos podem ajudar os usuários a filtrar e selecionar os melhores resultados com eficiência. Identifica-se uma categoria de módulos para os quais os postulados de Revisão de Crenças permanecem os mesmos e, em condições moderadas, o resultado permanece inalterado. A análise dos dados experimentais mostra que os módulos são benéficos para o desempenho, muitas vezes exibindo ganhos de ordens de magnitude. Além disso, os métodos propostos para auxiliar na seleção de reparos provaram ser competitivos com os métodos existentes.Biblioteca Digitais de Teses e Dissertações da USPWassermann, RenataGuimarães, Ricardo Ferreira2020-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-03-20T00:14:02Zoai:teses.usp.br:tde-19032020-043422Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-20T00:14:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modularity in belief change of description logic bases
Modularidade em revisão de crenças em lógicas de descrição
title Modularity in belief change of description logic bases
spellingShingle Modularity in belief change of description logic bases
Guimarães, Ricardo Ferreira
Belief change
Modularisação de ontologias
Ontology modularisation
Ontology repair
Reparo de ontologias
Revisão de crenças
title_short Modularity in belief change of description logic bases
title_full Modularity in belief change of description logic bases
title_fullStr Modularity in belief change of description logic bases
title_full_unstemmed Modularity in belief change of description logic bases
title_sort Modularity in belief change of description logic bases
author Guimarães, Ricardo Ferreira
author_facet Guimarães, Ricardo Ferreira
author_role author
dc.contributor.none.fl_str_mv Wassermann, Renata
dc.contributor.author.fl_str_mv Guimarães, Ricardo Ferreira
dc.subject.por.fl_str_mv Belief change
Modularisação de ontologias
Ontology modularisation
Ontology repair
Reparo de ontologias
Revisão de crenças
topic Belief change
Modularisação de ontologias
Ontology modularisation
Ontology repair
Reparo de ontologias
Revisão de crenças
description Ontologies written in OWL and OWL 2 are one of the most prominent tools in Knowledge Representation nowadays. They allow the sharing of knowledge of a domain unambiguously and operate with implicit knowledge using reasoning algorithms. However, ontologies can become large and very complex, hindering their maintenance and evolution. One complicating factor is that a small change can trigger unexpected and unwanted consequences. Solutions to sound maintenance have emerged separately in Belief Change and Ontology Repair. Despite having distinct views, proposals in both fields often rely on the Description Logics, which underpin OWL and OWL 2. Hence, the approaches from both fields for repairing ontologies are very similar at the algorithmic level. Consequently, both areas need to address the high complexity of the debugging problem and cope with the exponential number of correct outcomes. There are studies in Ontology Repair which use modularity techniques to extract smaller subsets of the ontology which are sufficient to fix a particular consequence. Still, the effect of modules on the Belief Change framework is poorly understood: either the postulates or the mechanisms which select the final result might change when a module replaces the input. Also, the impact on computational performance was only assessed in small corpora and with few variations in parameters. Moreover, the number of outcomes is still exponential, and existing solutions rarely provide means to mitigate this issue. In this context, this thesis provides a clearer understanding of the effects of modularity in the theoretical framework that guarantees rational (sound) changes. Also, it evaluates the performance impact of modularity empirically using locality-based modules in a broader setting. Additionally, it also investigates how modules can aid users to filter and select the best results efficiently. A category of modules is identified for which the postulates from Belief Change remain the same, and under mild conditions, the result is unchanged. The analysis of experimental data shows that modules are beneficial for performance, often displaying gains of orders of magnitude. Also, the methods proposed to aid in the selection of repairs are shown to be competitive with existing approaches.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19032020-043422/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257164722208768