Modelo geométrico de ordem k correlacionado
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/104/104131/tde-04102019-201338/ |
Resumo: | Neste trabalho propomos a distribuição geométrica de ordem k correlacionada, k ≥ 1, de parâmetros π e ρ π ∈ (0;1), max{-1, -1-π / π } ≤ ρ < 1, como uma extensão da generalização da distribuição geométrica proposta por Philippou e Muwafi (1980) e utilizando as idéias de Kolev, Minkova e Neytchev (2000) para generalizações de distribuições discretas provenientes de sequências de variáveis binárias. Sendo assim, é também uma releitura da distribuição geométrica de ordem k apresentada por Aki e Hirano (1993). Algumas propriedades da distribuição são demonstradas. Modelos de regressão foram desenvolvidos por ambos os métodos de estimação, clássico e bayesiano. Estudos de dados simulados mostram o comportamento das distribuições e algumas propriedades dos estimadores. A principal motivação em propor este modelo, além de contribuir para generalizações de distribuições discretas, é ter uma alternativa ainda mais adequada para análise de dados reais, pois considera-se o efeito da correlação individual existente pelo parâmetro ρ. Os ajustes dos modelos foram avaliados e análise de resíduos e de diagnóstico de influência ou divergência também é apresentada. |
id |
USP_4d3f82c3fc82ff4308ff0f9ecb5594a5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04102019-201338 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelo geométrico de ordem k correlacionadoCorrelated Geometric Model of Order kAnálise de diagnósticoCorrelated geometric distributionDistribuição geométrica correlacionadaDistribuição geométrica de ordem kDistribuições discretas generalizadasGeneralized Discret distributionsGeométric distribution of order kModelos de regressãoRegression diagnosticsRegression modelsNeste trabalho propomos a distribuição geométrica de ordem k correlacionada, k ≥ 1, de parâmetros π e ρ π ∈ (0;1), max{-1, -1-π / π } ≤ ρ < 1, como uma extensão da generalização da distribuição geométrica proposta por Philippou e Muwafi (1980) e utilizando as idéias de Kolev, Minkova e Neytchev (2000) para generalizações de distribuições discretas provenientes de sequências de variáveis binárias. Sendo assim, é também uma releitura da distribuição geométrica de ordem k apresentada por Aki e Hirano (1993). Algumas propriedades da distribuição são demonstradas. Modelos de regressão foram desenvolvidos por ambos os métodos de estimação, clássico e bayesiano. Estudos de dados simulados mostram o comportamento das distribuições e algumas propriedades dos estimadores. A principal motivação em propor este modelo, além de contribuir para generalizações de distribuições discretas, é ter uma alternativa ainda mais adequada para análise de dados reais, pois considera-se o efeito da correlação individual existente pelo parâmetro ρ. Os ajustes dos modelos foram avaliados e análise de resíduos e de diagnóstico de influência ou divergência também é apresentada.In this work we propose the correlated geometric distribution of order k, k ≥ 1, with parameters π e ρ π ∈ (0;1), max{-1, -1-π / π } ≤ ρ < 1, as an extension of the generalized geometric distribution proposed by Philippou e Muwafi (1980) and considering the ideas of Kolev, Minkova e Neytchev (2000) for generalizations of discrete distributions by including an additional parameter ρ. Thus, it is also a re-reading of the geometric distribution of order k by Aki e Hirano (1993). Some properties of the proposed distribution are presented. Regression models are developed using classical and Bayesian estimation methods. Simulated data studies show the behavior of the distributions and some properties of the estimators. The main motivation in this research, besides contribute to generalizations of discrete distributions, is to propose an alternative analysis and even more suitable for real data, since the effect of the individual correlation is taken into account through the existence of the parameter. The fitted models are evaluated and the residual analysis and diagnosis of influence or divergence are also presented.Biblioteca Digitais de Teses e Dissertações da USPDiniz, Carlos Alberto RibeiroSouza, Roberta de2019-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/104/104131/tde-04102019-201338/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-11-08T20:49:15Zoai:teses.usp.br:tde-04102019-201338Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T20:49:15Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelo geométrico de ordem k correlacionado Correlated Geometric Model of Order k |
title |
Modelo geométrico de ordem k correlacionado |
spellingShingle |
Modelo geométrico de ordem k correlacionado Souza, Roberta de Análise de diagnóstico Correlated geometric distribution Distribuição geométrica correlacionada Distribuição geométrica de ordem k Distribuições discretas generalizadas Generalized Discret distributions Geométric distribution of order k Modelos de regressão Regression diagnostics Regression models |
title_short |
Modelo geométrico de ordem k correlacionado |
title_full |
Modelo geométrico de ordem k correlacionado |
title_fullStr |
Modelo geométrico de ordem k correlacionado |
title_full_unstemmed |
Modelo geométrico de ordem k correlacionado |
title_sort |
Modelo geométrico de ordem k correlacionado |
author |
Souza, Roberta de |
author_facet |
Souza, Roberta de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Diniz, Carlos Alberto Ribeiro |
dc.contributor.author.fl_str_mv |
Souza, Roberta de |
dc.subject.por.fl_str_mv |
Análise de diagnóstico Correlated geometric distribution Distribuição geométrica correlacionada Distribuição geométrica de ordem k Distribuições discretas generalizadas Generalized Discret distributions Geométric distribution of order k Modelos de regressão Regression diagnostics Regression models |
topic |
Análise de diagnóstico Correlated geometric distribution Distribuição geométrica correlacionada Distribuição geométrica de ordem k Distribuições discretas generalizadas Generalized Discret distributions Geométric distribution of order k Modelos de regressão Regression diagnostics Regression models |
description |
Neste trabalho propomos a distribuição geométrica de ordem k correlacionada, k ≥ 1, de parâmetros π e ρ π ∈ (0;1), max{-1, -1-π / π } ≤ ρ < 1, como uma extensão da generalização da distribuição geométrica proposta por Philippou e Muwafi (1980) e utilizando as idéias de Kolev, Minkova e Neytchev (2000) para generalizações de distribuições discretas provenientes de sequências de variáveis binárias. Sendo assim, é também uma releitura da distribuição geométrica de ordem k apresentada por Aki e Hirano (1993). Algumas propriedades da distribuição são demonstradas. Modelos de regressão foram desenvolvidos por ambos os métodos de estimação, clássico e bayesiano. Estudos de dados simulados mostram o comportamento das distribuições e algumas propriedades dos estimadores. A principal motivação em propor este modelo, além de contribuir para generalizações de distribuições discretas, é ter uma alternativa ainda mais adequada para análise de dados reais, pois considera-se o efeito da correlação individual existente pelo parâmetro ρ. Os ajustes dos modelos foram avaliados e análise de resíduos e de diagnóstico de influência ou divergência também é apresentada. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-04102019-201338/ |
url |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-04102019-201338/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256673658339328 |